Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Rohini Kitture is active.

Publication


Featured researches published by Rohini Kitture.


International Journal of Nanomedicine | 2012

Synthesis of silver nanoparticles using Dioscorea bulbifera tuber extract and evaluation of its synergistic potential in combination with antimicrobial agents.

Sougata Ghosh; Sumersing Patil; Mehul Ahire; Rohini Kitture; S. N. Kale; Karishma R. Pardesi; Swaranjit S Cameotra; Jayesh R. Bellare; Dilip D. Dhavale; Amit M. Jabgunde; Balu A. Chopade

Background Development of an environmentally benign process for the synthesis of silver nanomaterials is an important aspect of current nanotechnology research. Among the 600 species of the genus Dioscorea, Dioscorea bulbifera has profound therapeutic applications due to its unique phytochemistry. In this paper, we report on the rapid synthesis of silver nanoparticles by reduction of aqueous Ag+ ions using D. bulbifera tuber extract. Methods and results Phytochemical analysis revealed that D. bulbifera tuber extract is rich in flavonoid, phenolics, reducing sugars, starch, diosgenin, ascorbic acid, and citric acid. The biosynthesis process was quite fast, and silver nanoparticles were formed within 5 hours. Ultraviolet-visible absorption spectroscopy, transmission electron microscopy, high-resolution transmission electron microscopy, energy dispersive spectroscopy, and x-ray diffraction confirmed reduction of the Ag+ ions. Varied morphology of the bioreduced silver nanoparticles included spheres, triangles, and hexagons. Optimization studies revealed that the maximum rate of synthesis could be achieved with 0.7 mM AgNO3 solution at 50°C in 5 hours. The resulting silver nanoparticles were found to possess potent antibacterial activity against both Gram-negative and Gram-positive bacteria. Beta-lactam (piperacillin) and macrolide (eryth-romycin) antibiotics showed a 3.6-fold and 3-fold increase, respectively, in combination with silver nanoparticles selectively against multidrug-resistant Acinetobacter baumannii. Notable synergy was seen between silver nanoparticles and chloramphenicol or vancomycin against Pseudomonas aeruginosa, and was supported by a 4.9-fold and 4.2-fold increase in zone diameter, respectively. Similarly, we found a maximum 11.8-fold increase in zone diameter of streptomycin when combined with silver nanoparticles against E. coli, providing strong evidence for the synergistic action of a combination of antibiotics and silver nanoparticles. Conclusion This is the first report on the synthesis of silver nanoparticles using D. bulbifera tuber extract followed by an estimation of its synergistic potential for enhancement of the antibacterial activity of broad spectrum antimicrobial agents.


Applied Physics Letters | 2011

Photonic crystal fiber injected with Fe3O4 nanofluid for magnetic field detection

Harneet V. Thakur; Sandipan M. Nalawade; Swati Gupta; Rohini Kitture; S. N. Kale

We report a magnetic field sensor having advantages of both photonic crystal fiber and optofluidics, combining them on a single platform by infiltrating small amount of Fe3O4 magnetic optofluid/nanofluid in cladding holes of polarization-maintaining photonic crystal fiber. We demonstrated that magnetic field of few mT can be easily and very well detected with higher sensitivity of 242 pm/mT. The change in the birefringence values has been correlated to the response of nanofluid to applied field.


Journal of Nanobiotechnology | 2012

Gnidia glauca flower extract mediated synthesis of gold nanoparticles and evaluation of its chemocatalytic potential.

Sougata Ghosh; Sumersing Patil; Mehul Ahire; Rohini Kitture; Deepanjali D. Gurav; Amit M. Jabgunde; S. N. Kale; Karishma R. Pardesi; Vaishali S. Shinde; Jayesh R. Bellare; Dilip D. Dhavale; Balu A. Chopade

BackgroundNovel approaches for synthesis of gold nanoparticles (AuNPs) are of utmost importance owing to its immense applications in diverse fields including catalysis, optics, medical diagnostics and therapeutics. We report on synthesis of AuNPs using Gnidia glauca flower extract (GGFE), its detailed characterization and evaluation of its chemocatalytic potential.ResultsSynthesis of AuNPs using GGFE was monitored by UV-Vis spectroscopy and was found to be rapid that completed within 20 min. The concentration of chloroauric acid and temperature was optimized to be 0.7 mM and 50°C respectively. Bioreduced nanoparticles varied in morphology from nanotriangles to nanohexagons majority being spherical. AuNPs were characterized employing transmission electron microscopy, high resolution transmission electron microscopy. Confirmation of elemental gold was carried out by elemental mapping in scanning transmission electron microscopic mode, energy dispersive spectroscopy and X-ray diffraction studies. Spherical particles of size ~10 nm were found in majority. However, particles of larger dimensions were in range between 50-150 nm. The bioreduced AuNPs exhibited remarkable catalytic properties in a reduction reaction of 4-nitrophenol to 4-aminophenol by NaBH4 in aqueous phase.ConclusionThe elaborate experimental evidences support that GGFE can provide an environmentally benign rapid route for synthesis of AuNPs that can be applied for various purposes. Biogenic AuNPs synthesized using GGFE exhibited excellent chemocatalytic potential.


Journal of Nanomaterials | 2011

Synthesis of gold nanoanisotrops using dioscorea bulbifera tuber extract

Sougata Ghosh; Sumersing Patil; Mehul Ahire; Rohini Kitture; Amit M. Jabgunde; S. N. Kale; Karishma R. Pardesi; Jayesh R. Bellare; Dilip D. Dhavale; Balu A. Chopade

Biosynthesis of metal nanoparticles employing plant extracts and thereby development of an environmentally benign process is an important branch of nanotechnology. Here, the synthesis of gold nanoparticles using Dioscorea bulbifera tuber extract (DBTE) as the reducing agent is reported. Field emission scanning electron microscopy (FESEM), energy-dispersive spectroscopy (EDX), X-ray diffraction (XRD), and UV-visible absorption spectroscopy confirmed the reduction of gold ions to AuNPs. The anisotropic nanoparticles consist of a mixture of gold nanotriangles, nanoprisms, nanotrapezoid, and spheres. The kinetics of particle formation was time dependent and was enhanced by the increase of temperature from 6° to 50°, the optimum being 50°. The optimum concentration of chloroauric acid was found to be 1mM. Complete reduction of the metal ions within 5 hours by DBTE highlights the development of a novel ecofriendly route of biological synthesis of gold nanoparticles. This is the first paper on synthesis of gold nanoparticles using DBTE.


Journal of Nanoparticles | 2013

Adiantum philippense L. Frond Assisted Rapid Green Synthesis of Gold and Silver Nanoparticles

Duhita G. Sant; Tejal R. Gujarathi; Shrikant R. Harne; Sougata Ghosh; Rohini Kitture; S. N. Kale; Balu A. Chopade; Karishma R. Pardesi

Development of an ecofriendly, reliable, and rapid process for synthesis of nanoparticles using biological system is an important bulge in nanotechnology. Antioxidant potential and medicinal value of Adiantum philippense L. fascinated us to utilize it for biosynthesis of gold and silver nanoparticles (AuNPs and AgNPs). The current paper reports utility of aqueous extract of A. philippense L. fronds for the green synthesis of AuNPs and AgNPs. Effect of various parameters on synthesis of nanoparticles was monitored by UV-Vis spectrometry. Optimum conditions for AuNPs synthesis were 1 : 1 proportion of original extract at pH 11 and 5 mM tetrachloroauric acid, whereas optimum conditions for AgNPs synthesis were 1 : 1 proportion of original extract at pH 12 and 9 mM silver nitrate. Characterization of nanoparticles was done by TEM, SAED, XRD, EDS, FTIR, and DLS analyses. The results revealed that AuNPs and AgNPs were anisotropic. Monocrystalline AuNPs and polycrystalline AgNPs measured 10 to 18 nm in size. EDS and XRD analyses confirmed the presence of elemental gold and silver. FTIR analysis revealed a possible binding of extract to AuNPs through –NH2 group and to AgNPs through C=C group. These nanoparticles stabilized by a biological capping agent could further be utilized for biomedical applications.


Journal of Nanomaterials | 2015

Dioscorea bulbifera mediated synthesis of novel Au core Ag shell nanoparticles with potent antibiofilm and antileishmanial activity

Sougata Ghosh; Soham Jagtap; Piyush More; Usha J. Shete; Neeraj O. Maheshwari; Shilpa J. Rao; Rohini Kitture; S. N. Kale; Jayesh R. Bellare; Shivprasad Patil; Jayanta K. Pal; Balu A. Chopade

Dioscorea bulbifera is a potent medicinal plant used in both Indian and Chinese traditional medicine owing to its rich phytochemical diversity. Herein, we report the rapid synthesis of novel AucoreAgshell nanoparticles by D. bulbifera tuber extract (DBTE). AucoreAgshell NPs synthesis was completed within 5 h showing a prominent peak at 540 nm. HRTEM analysis revealed 9 nm inner core of elemental gold covered by a silver shell giving a total particle diameter upto 15 nm. AucoreAgshellNPs were comprised of 57.34 ± 1.01% gold and 42.66 ± 0.97% silver of the total mass. AucoreAgshellNPs showed highest biofilm inhibition upto 83.68 ± 0.09% against A. baumannii. Biofilms of P. aeruginosa, E. coli, and S. aureus were inhibited up to 18.93 ± 1.94%, 22.33 ± 0.56%, and 30.70 ± 1.33%, respectively. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) confirmed unregulated cellular efflux through pore formation leading to cell death. Potent antileishmanial activity of AucoreAgshellNPs (MIC = 32 µg/mL) was confirmed by MTT assay. Further SEM micrographs showed pronounced deformity in the spindle shaped cellular morphology changing to spherical. This is the first report of synthesis, characterization, antibiofilm, and antileishmanial activity of AucoreAgshellNPs synthesized by D. bulbifera.


International Journal of Nanomedicine | 2015

Novel platinum-palladium bimetallic nanoparticles synthesized by Dioscorea bulbifera: anticancer and antioxidant activities

Sougata Ghosh; Rahul Nitnavare; Ankush Dewle; Geetanjali B. Tomar; Rohan Chippalkatti; Piyush More; Rohini Kitture; S. N. Kale; Jayesh R. Bellare; Balu A. Chopade

Medicinal plants serve as rich sources of diverse bioactive phytochemicals that might even take part in bioreduction and stabilization of phytogenic nanoparticles with immense therapeutic properties. Herein, we report for the first time the rapid efficient synthesis of novel platinum–palladium bimetallic nanoparticles (Pt–PdNPs) along with individual platinum (PtNPs) and palladium (PdNPs) nanoparticles using a medicinal plant, Dioscorea bulbifera tuber extract (DBTE). High-resolution transmission electron microscopy revealed monodispersed PtNPs of size 2–5 nm, while PdNPs and Pt–PdNPs between 10 and 25 nm. Energy dispersive spectroscopy analysis confirmed 30.88%±1.73% elemental Pt and 68.96%±1.48% elemental Pd in the bimetallic nanoparticles. Fourier transform infrared spectra indicated strong peaks at 3,373 cm−1, attributed to hydroxyl group of polyphenolic compounds in DBTE that might play a key role in bioreduction in addition to the sharp peaks at 2,937, 1,647, 1,518, and 1,024 cm−1, associated with C–H stretching, N–H bending in primary amines, N–O stretching in nitro group, and C–C stretch, respectively. Anticancer activity against HeLa cells showed that Pt–PdNPs exhibited more pronounced cell death of 74.25% compared to individual PtNPs (12.6%) or PdNPs (33.15%). Further, Pt–PdNPs showed an enhanced scavenging activity against 2,2-diphenyl-1-picrylhydrazyl, superoxide, nitric oxide, and hydroxyl radicals.


Journal of Applied Physics | 2012

Fe3O4-citrate-curcumin: Promising conjugates for superoxide scavenging, tumor suppression and cancer hyperthermia

Rohini Kitture; Sougata Ghosh; Parag Kulkarni; X. L. Liu; Dipak Maity; Saniya Patil; Ding Jun; Yogesh Dushing; S. L. Laware; Balu A. Chopade; S. N. Kale

Fe3O4 nanoparticles have been conjugated to curcumin (CU) molecules via a citrate (CA) linker (Fe-CA-CU) and have been explored for superoxide scavenging, tumor suppression, and cancer hyperthermia. The conjugation chemistry reveals that Fe3+ ions on the nanoparticle surface readily conjugates to the available carboxyl sites on the CA molecule, which further conjugates to CU at its central enol -OH group. As seen from the UV-vis spectroscopy, the therapeutically active chromophore group of CU, which is seen at 423 nm, was intact, ensuring the activity the molecule. Magnetization measurements showed good hysteresis curves of Fe3O4 and Fe-CA-CU, indicating the presence of magnetism after conjugation. The loading percentage of citrate-curcumin was seen to be ∼10% from the thermo-gravimetric analysis. The systems when subjected to radio-frequency fields of 240 KHz, were seen to get heated up. The Fe3O4 heating exhibited better slope (1 °C/s) as compared to the Fe-CA-CU system (∼0.7 °C/s) for a sample of conce...


Journal of Nanomedicine & Nanotechnology | 2015

Antidiabetic and Antioxidant Properties of Copper Nanoparticles Synthesized by Medicinal Plant Dioscorea bulbifera

Sougata Ghosh; Piyush More; Rahul Nitnavare; Soham Jagtap; Rohan Chippalkatti; Abhishek Derle; Rohini Kitture; Adersh Asok; S. N. Kale; Shailza Singh; Mahemud L. Shaikh; Boppana Ramanamurthy; Jayesh R. Bellare; Balu A. Chopade

Background: Biological route for synthesis of copper nanoparticles (CuNPs) with therapeutic potential is a major challenge. In this study, CuNPs were synthesized by D. bulbifera tuber extract (DBTE) which were further evaluated for antidiabetic and free radical scavenging activity. Methods: CuNPs synthesized by DBTE were characterized by UV-visible spectroscopy, transmission electron microscopy, energy dispersive spectroscopy and dynamic light scattering. CuNPs were checked for α-amylase and α-glucosidase inhibition along with interaction studies employing fluroscence spectroscopy, circular dichroism spectroscopy and computational docking. DPPH, nitric oxide and superoxide radical scavenging activities of CuNPs were also checked. Results: Spherical monodispersed CuNPs were synthesized within 5 h that was indicated by a colour change from pale blue to brown. Majority of the nanoparticles synthesized were found to be between 12 to 16 nm as showed in DLS which grew till a final size of 86 to 126 nm as indicated in TEM. Bioreduced CuNPs showed 38.70 ± 1.45% and 34.72 ± 1.22% inhibition against porcine and murine pancreatic amylase, respectively with an uncompetitive mode that was further confirmed by docking studies. Fluorescence spectroscopy confirmed the interaction of CuNPs to the enzyme via Trp residues while CD spectra indicated the structural and conformational changes on binding of CuNPs to the enzyme. CuNPs exhibited 99.09 ± 0.15% inhibition against α-glucosidase while 90.67 ± 0.33% inhibition against murine intestinal glucosidase, respectively. CuNPs showed 40.81 ± 1.44%, 79.06 ± 1.02% and 48.39 ± 1.46% scavenging activity against DPPH, nitric oxide and superoxide radicals respectively. Conclusion: D.bulbifera tuber extract mediated bioreduction is most rapid route to synthesize novel CuNPs with promising antidiabetic and antioxidant properties. This is the first detailed report which provides intense scientific rationale for the use of CuNPs as nanomedicine for efficient control of T2DM and oxidative stress.


Journal of Nanomedicine & Nanotechnology | 2016

Gloriosa superba Mediated Synthesis of Silver and Gold Nanoparticles forAnticancer Applications

Sougata Ghosh; Ashwini N. Harke; Maliyackal Jini Chacko; Sonal P. Gurav; Komal A. Joshi; Aarti Dhepe; Ankush Dewle; Geetanjali B. Tomar; Rohini Kitture; Vijay Singh Parihar; Kaushik Banerjee; Narayan Kamble; Jayesh R. Bellare; Balu A. Chopade

Designing of novel environmentally benign route for synthesis of nanoparticles is a prerequisite for developing nanomedicine. Medicinal plants serve as rich source of diverse phytochemicals which not only synthesizes but also stabilizes the bioreduced nanoparticles. Herein we report for the first time the anticancer activity of gold and silver nanoparticles synthesized employing Gloriosa superba tuber extract. The synthesis was found to be rapid and efficient which completed within 5 h. Optimum concentration of AgNO3 was found to be 3 mM for synthesis of AgNPs while for AuNPs it was found to be 4 mM. Higher temperature facilitated the biosynthesis process, optimum being 50°C. High resolution transmission electron microscopy revealed that the AgNPs were smaller in a range from 3 to 20 nm, majority being spherical in shape. AuNPs were of exotic shapes like spheres, triangles and hexagons that varied in size from 20 to 120 nm. Elemental gold and silver were confirmed in the AuNPs and AgNPs, respectively using energy dispersive spectroscopy and X-ray diffraction spectroscopy. Fourier transform infrared spectroscopy indicated a broad peak from 3300 to 3500 cm-1 in all the three spectra was attributed to O-H group of phenols/alcohol, which could be a component of the GSTE that might play a critical role in synthesis and stabilization. Biochemical analysis showed the presence of phenolics, starch, reducing sugars, ascorbic acid and citric acid. Gas chromatography-mass spectroscopy indicated that the most predominant compounds found in GSTE, were phenol, 3-methoxy-(C7H8O2), salicyl alcohol (C7H8O2), benzoic acid, 2-hydroxy-6-methoxy-(C8H8O4) and asarone (C12H16O3). AgNPs exhibited 42.04 ± 1.87% anticancer activity while AuNPs showed only 35.59 ± 4.1%. A synergistic antiproliferative activity up to 58.48 ± 1.71% was observed on combination of both which was confirmed by flow cytometry and confocal microscopy.

Collaboration


Dive into the Rohini Kitture's collaboration.

Top Co-Authors

Avatar

S. N. Kale

Defence Institute of Advanced Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Balu A. Chopade

Savitribai Phule Pune University

View shared research outputs
Top Co-Authors

Avatar

Jayesh R. Bellare

Indian Institute of Technology Bombay

View shared research outputs
Top Co-Authors

Avatar

Piyush More

Savitribai Phule Pune University

View shared research outputs
Top Co-Authors

Avatar

Dilip D. Dhavale

Savitribai Phule Pune University

View shared research outputs
Top Co-Authors

Avatar

Karishma R. Pardesi

Savitribai Phule Pune University

View shared research outputs
Top Co-Authors

Avatar

Komal A. Joshi

Savitribai Phule Pune University

View shared research outputs
Top Co-Authors

Avatar

Sumersing Patil

Savitribai Phule Pune University

View shared research outputs
Top Co-Authors

Avatar

Vaishali S. Shinde

Savitribai Phule Pune University

View shared research outputs
Researchain Logo
Decentralizing Knowledge