Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Banavoth Murali is active.

Publication


Featured researches published by Banavoth Murali.


Journal of Physical Chemistry Letters | 2015

CH3NH3PbCl3 Single Crystals: Inverse Temperature Crystallization and Visible-Blind UV-Photodetector

Giacomo Maculan; Arif D. Sheikh; Ahmed L. Abdelhady; Makhsud I. Saidaminov; Azimul Haque; Banavoth Murali; Erkki Alarousu; Omar F. Mohammed; Tom Wu; Osman M. Bakr

Single crystals of hybrid perovskites have shown remarkably improved physical properties compared to their polycrystalline film counterparts, underscoring their importance in the further development of advanced semiconductor devices. Here we present a new method of growing sizable CH3NH3PbCl3 single crystals based on the retrograde solubility behavior of hybrid perovskites. We show, for the first time, the energy band structure, charge recombination, and transport properties of CH3NH3PbCl3 single crystals. These crystals exhibit trap-state density, charge carrier concentration, mobility, and diffusion length comparable with the best quality crystals of methylammonium lead iodide or bromide perovskites reported so far. The high quality of the crystal along with its suitable optical band gap enabled us to build an efficient visible-blind UV-photodetector, demonstrating its potential in optoelectronic applications.


Journal of Physical Chemistry Letters | 2015

Air-Stable Surface-Passivated Perovskite Quantum Dots for Ultra-Robust, Single- and Two-Photon-Induced Amplified Spontaneous Emission

Jun Pan; Smritakshi P. Sarmah; Banavoth Murali; Ibrahim Dursun; Wei Peng; Manas R. Parida; Jiakai Liu; Lutfan Sinatra; Noktan M. AlYami; Chao Zhao; Erkki Alarousu; Tien Khee Ng; Boon S. Ooi; Osman M. Bakr; Omar F. Mohammed

We demonstrate ultra-air- and photostable CsPbBr3 quantum dots (QDs) by using an inorganic-organic hybrid ion pair as the capping ligand. This passivation approach to perovskite QDs yields high photoluminescence quantum yield with unprecedented operational stability in ambient conditions (60 ± 5% lab humidity) and high pump fluences, thus overcoming one of the greatest challenges impeding the development of perovskite-based applications. Due to the robustness of passivated perovskite QDs, we were able to induce ultrastable amplified spontaneous emission (ASE) in solution processed QD films not only through one photon but also through two-photon absorption processes. The latter has not been observed before in the family of perovskite materials. More importantly, passivated perovskite QD films showed remarkable photostability under continuous pulsed laser excitation in ambient conditions for at least 34 h (corresponds to 1.2 × 10(8) laser shots), substantially exceeding the stability of other colloidal QD systems in which ASE has been observed.


Advanced Materials | 2016

Highly Efficient Perovskite-Quantum-Dot Light-Emitting Diodes by Surface Engineering

Jun Pan; Li Na Quan; Yongbiao Zhao; Wei Peng; Banavoth Murali; Smritakshi P. Sarmah; Mingjian Yuan; Lutfan Sinatra; Noktan M. AlYami; Jiakai Liu; Emre Yassitepe; Zhenyu Yang; Oleksandr Voznyy; Riccardo Comin; Mohamed N. Hedhili; Omar F. Mohammed; Zheng-Hong Lu; Dong Ha Kim; Edward H. Sargent; Osman M. Bakr

A two-step ligand-exchange strategy is developed, in which the long-carbon- chain ligands on all-inorganic perovskite (CsPbX3 , X = Br, Cl) quantum dots (QDs) are replaced with halide-ion-pair ligands. Green and blue light-emitting diodes made from the halide-ion-pair-capped quantum dots exhibit high external quantum efficiencies compared with the untreated QDs.


Journal of Physical Chemistry Letters | 2016

Heterovalent Dopant Incorporation for Bandgap and Type Engineering of Perovskite Crystals

Ahmed L. Abdelhady; Makhsud I. Saidaminov; Banavoth Murali; Valerio Adinolfi; Oleksandr Voznyy; Khabiboulakh Katsiev; Erkki Alarousu; Riccardo Comin; Ibrahim Dursun; Lutfan Sinatra; Edward H. Sargent; Omar F. Mohammed; Osman M. Bakr

Controllable doping of semiconductors is a fundamental technological requirement for electronic and optoelectronic devices. As intrinsic semiconductors, hybrid perovskites have so far been a phenomenal success in photovoltaics. The inability to dope these materials heterovalently (or aliovalently) has greatly limited their wider utilizations in electronics. Here we show an efficient in situ chemical route that achieves the controlled incorporation of trivalent cations (Bi(3+), Au(3+), or In(3+)) by exploiting the retrograde solubility behavior of perovskites. We term the new method dopant incorporation in the retrograde regime. We achieve Bi(3+) incorporation that leads to bandgap tuning (∼300 meV), 10(4) fold enhancement in electrical conductivity, and a change in the sign of majority charge carriers from positive to negative. This work demonstrates the successful incorporation of dopants into perovskite crystals while preserving the host lattice structure, opening new avenues to tailor the electronic and optoelectronic properties of this rapidly emerging class of solution-processed semiconductors.


Journal of the American Chemical Society | 2017

Engineering Interfacial Charge Transfer in CsPbBr3 Perovskite Nanocrystals by Heterovalent Doping

Raihana Begum; Manas R. Parida; Ahmed L. Abdelhady; Banavoth Murali; Noktan M. AlYami; Ghada H. Ahmed; Mohamed N. Hedhili; Osman M. Bakr; Omar F. Mohammed

Since compelling device efficiencies of perovskite solar cells have been achieved, investigative efforts have turned to understand other key challenges in these systems, such as engineering interfacial energy-level alignment and charge transfer (CT). However, these types of studies on perovskite thin-film devices are impeded by the morphological and compositional heterogeneity of the films and their ill-defined surfaces. Here, we use well-defined ligand-protected perovskite nanocrystals (NCs) as model systems to elucidate the role of heterovalent doping on charge-carrier dynamics and energy level alignment at the interface of perovskite NCs with molecular acceptors. More specifically, we develop an in situ doping approach for colloidal CsPbBr3 perovskite NCs with heterovalent Bi3+ ions by hot injection to precisely tune their band structure and excited-state dynamics. This synthetic method allowed us to map the impact of doping on CT from the NCs to different molecular acceptors. Using time-resolved spectroscopy with broadband capability, we clearly demonstrate that CT at the interface of NCs can be tuned and promoted by metal ion doping. We found that doping increases the energy difference between states of the molecular acceptor and the donor moieties, subsequently facilitating the interfacial CT process. This work highlights the key variable components not only for promoting interfacial CT in perovskites, but also for establishing a higher degree of precision and control over the surface and the interface of perovskite molecular acceptors.


Journal of Physical Chemistry Letters | 2017

Zero-Dimensional Cs4PbBr6 Perovskite Nanocrystals

Yuhai Zhang; Makhsud I. Saidaminov; Ibrahim Dursun; Haoze Yang; Banavoth Murali; Erkki Alarousu; Emre Yengel; Buthainah A. Alshankiti; Osman M. Bakr; Omar F. Mohammed

Perovskite nanocrystals (NCs) have become leading candidates for solution-processed optoelectronics applications. While substantial work has been published on 3-D perovskite phases, the NC form of the zero-dimensional (0-D) phase of this promising class of materials remains elusive. Here we report the synthesis of a new class of colloidal semiconductor NCs based on Cs4PbBr6, the 0-D perovskite, enabled through the design of a novel low-temperature reverse microemulsion method with 85% reaction yield. These 0-D perovskite NCs exhibit high photoluminescence quantum yield (PLQY) in the colloidal form (PLQY: 65%), and, more importantly, in the form of thin film (PLQY: 54%). Notably, the latter is among the highest values reported so far for perovskite NCs in the solid form. Our work brings the 0-D phase of perovskite into the realm of colloidal NCs with appealingly high PLQY in the film form, which paves the way for their practical application in real devices.


Journal of Materials Chemistry | 2016

Optoelectronic and photovoltaic properties of the air-stable organohalide semiconductor (CH3NH3)3Bi2I9

Mutalifu Abulikemu; Samy Ould-Chikh; Xiaohe Miao; Erkki Alarousu; Banavoth Murali; Guy Olivier Ngongang Ndjawa; Jérémy Barbé; Abdulrahman El Labban; Aram Amassian; Silvano Del Gobbo

Lead halide perovskite materials have shown excellent optoelectronic as well as photovoltaic properties. However, the presence of lead and the chemical instability relegate lead halide perovskites to research applications only. Here, we investigate an emerging lead-free and air stable compound (CH3NH3)3Bi2I9 as a non-toxic potential alternative to lead halide perovskites. We have synthesized thin films, powders and millimeter-scale single crystals of (CH3NH3)3Bi2I9 and investigated their structural and optoelectronic properties. We demonstrate that the degree of crystallinity strongly affects the optoelectronic properties of the material, resulting in significantly different band gaps in polycrystalline thin films and single crystals. Surface photovoltage spectroscopy reveals outstanding photocharge generation in the visible (<700 nm) region, while transient absorption spectroscopy and space charge limited current measurements point to a long exciton lifetime and a high carrier mobility, respectively, similar to lead halide perovskites pointing to the remarkable potential of this semiconductor. Photovoltaic devices fabricated using this material yield a low power conversion efficiency (PCE) to date, but the PCE is expected to increase with improvements in thin film processing and device engineering.


Nature Communications | 2016

Pure crystal orientation and anisotropic charge transport in large-area hybrid perovskite films

Namchul Cho; Feng Li; Bekir Turedi; Lutfan Sinatra; Smritakshi P. Sarmah; Manas R. Parida; Makhsud I. Saidaminov; Banavoth Murali; Victor M. Burlakov; Alain Goriely; Omar F. Mohammed; Tom Wu; Osman M. Bakr

Controlling crystal orientations and macroscopic morphology is vital to develop the electronic properties of hybrid perovskites. Here we show that a large-area, orientationally pure crystalline (OPC) methylammonium lead iodide (MAPbI3) hybrid perovskite film can be fabricated using a thermal-gradient-assisted directional crystallization method that relies on the sharp liquid-to-solid transition of MAPbI3 from ionic liquid solution. We find that the OPC films spontaneously form periodic microarrays that are distinguishable from general polycrystalline perovskite materials in terms of their crystal orientation, film morphology and electronic properties. X-ray diffraction patterns reveal that the film is strongly oriented in the (112) and (200) planes parallel to the substrate. This film is structurally confined by directional crystal growth, inducing intense anisotropy in charge transport. In addition, the low trap-state density (7.9 × 1013 cm−3) leads to strong amplified stimulated emission. This ability to control crystal orientation and morphology could be widely adopted in optoelectronic devices.


Angewandte Chemie | 2016

Engineering of CH3NH3PbI3 Perovskite Crystals by Alloying Large Organic Cations for Enhanced Thermal Stability and Transport Properties

Wei Peng; Xiaohe Miao; Valerio Adinolfi; Erkki Alarousu; Omar El Tall; Abdul-Hamid Emwas; Chao Zhao; Grant Walters; Jiakai Liu; Olivier Ouellette; Jun Pan; Banavoth Murali; Edward H. Sargent; Omar F. Mohammed; Osman M. Bakr

The number of studies on organic-inorganic hybrid perovskites has soared in recent years. However, the majority of hybrid perovskites under investigation are based on a limited number of organic cations of suitable sizes, such as methylammonium and formamidinium. These small cations easily fit into the perovskites three-dimensional (3D) lead halide framework to produce semiconductors with excellent charge transport properties. Until now, larger cations, such as ethylammonium, have been found to form 2D crystals with lead halide. Here we show for the first time that ethylammonium can in fact be incorporated coordinately with methylammonium in the lattice of a 3D perovskite thanks to a balance of opposite lattice distortion strains. This inclusion results in higher crystal symmetry, improved material stability, and markedly enhanced charge carrier lifetime. This crystal engineering strategy of balancing opposite lattice distortion effects vastly increases the number of potential choices of organic cations for 3D perovskites, opening up new degrees of freedom to tailor their optoelectronic and environmental properties.


Nano Letters | 2017

Ultralow Self-Doping in Two-dimensional Hybrid Perovskite Single Crystals

Wei Peng; Jun Yin; Kang-Ting Ho; Olivier Ouellette; Michele De Bastiani; Banavoth Murali; Omar El Tall; Chao Shen; Xiaohe Miao; Jun Pan; Erkki Alarousu; Jr-Hau He; Boon S. Ooi; Omar F. Mohammed; Edward H. Sargent; Osman M. Bakr

Unintentional self-doping in semiconductors through shallow defects is detrimental to optoelectronic device performance. It adversely affects junction properties and it introduces electronic noise. This is especially acute for solution-processed semiconductors, including hybrid perovskites, which are usually high in defects due to rapid crystallization. Here, we uncover extremely low self-doping concentrations in single crystals of the two-dimensional perovskites (C6H5C2H4NH3)2PbI4·(CH3NH3PbI3)n-1 (n = 1, 2, and 3), over three orders of magnitude lower than those of typical three-dimensional hybrid perovskites, by analyzing their conductivity behavior. We propose that crystallization of hybrid perovskites containing large organic cations suppresses defect formation and thus favors a low self-doping level. To exemplify the benefits of this effect, we demonstrate extraordinarily high light-detectivity (1013 Jones) in (C6H5C2H4NH3)2PbI4·(CH3NH3PbI3)n-1 photoconductors due to the reduced electronic noise, which makes them particularly attractive for the detection of weak light signals. Furthermore, the low self-doping concentration reduces the equilibrium charge carrier concentration in (C6H5C2H4NH3)2PbI4·(CH3NH3PbI3)n-1, advantageous in the design of p-i-n heterojunction solar cells by optimizing band alignment and promoting carrier depletion in the intrinsic perovskite layer, thereby enhancing charge extraction.

Collaboration


Dive into the Banavoth Murali's collaboration.

Top Co-Authors

Avatar

Omar F. Mohammed

King Abdullah University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Osman M. Bakr

King Abdullah University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Erkki Alarousu

King Abdullah University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

S. B. Krupanidhi

Indian Institute of Science

View shared research outputs
Top Co-Authors

Avatar

Makhsud I. Saidaminov

King Abdullah University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Manas R. Parida

King Abdullah University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Wei Peng

King Abdullah University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Smritakshi P. Sarmah

King Abdullah University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Aram Amassian

King Abdullah University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Boon S. Ooi

King Abdullah University of Science and Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge