Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Bang Ju Park is active.

Publication


Featured researches published by Bang Ju Park.


Colloids and Surfaces B: Biointerfaces | 2016

Growth factors-loaded stents modified with hyaluronic acid and heparin for induction of rapid and tight re-endothelialization

Dong Hoon Choi; Sung Nam Kang; Seong Min Kim; Samy Gobaa; Bang Ju Park; Ik Hwan Kim; Dong Keun Han

Rapid re-endothelialization of damaged vessel lining efficiently prevents restenosis and thrombosis and restores original vascular functions. In this study, we designed a novel metallic stent with a heparin-modified surface and used different methods, including 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC) and divinyl sulfone (DVS), to load growth factors. First we loaded heparin into a dopamine-conjugated hyaluronic acid (HA) coating to serve as a growth factor reservoir. In a second step, we took advantage of the heparin-binding domain of vascular endothelial growth factor (VEGF) and hepatocyte growth factor (HGF) to gain advanced re-endothelialization capabilities. We demonstrated that DVS technique offered higher amount of growth factor loading. In vitro assessment also showed better capillary-like structure formation and localized gap junctions when DVS coating was employed. This study suggested that growth factor loaded stent modified by HA and heparin provided the advantage to rapid and tight restoration of endothelium.


Journal of Colloid and Interface Science | 2015

Effects of interfacial layer wettability and thickness on the coating morphology and sirolimus release for drug-eluting stent.

Tarek M. Bedair; Seung Jung Yu; Sung Gap Im; Bang Ju Park; Dong Keun Han

Drug-eluting stents (DESs) have been used to treat coronary artery diseases by placing in the arteries. However, current DESs still suffer from polymer coating defects such as delamination and peeling-off that follows stent deployment. Such coating defects could increase the roughness of DES and might act as a source of late or very late thrombosis and might increase the incident of restenosis. In this regard, we modified the cobalt-chromium (Co-Cr) alloy surface with hydrophilic poly(2-hydroxyethyl methacrylate) (PHEMA) or hydrophobic poly(2-hydroxyethyl methacrylate)-grafted-poly(caprolactone) (PHEMA-g-PCL) brushes. The resulting surfaces were biocompatible and biodegradable, which could act as anchoring layer for the drug-in-polymer matrix coating. The two modifications were characterized by ATR-FTIR, XPS, water contact angle measurements, SEM and AFM. On the control and modified Co-Cr samples, a sirolimus (SRL)-containing poly(D,L-lactide) (PDLLA) were ultrasonically spray-coated, and the drug release was examined for 8weeks under physiological conditions. The results demonstrated that PHEMA as a primer coating improved the coating stability and degradation morphology, and drug release profile for short-term as compared to control Co-Cr, but fails after 7weeks in physiological buffer. On the other hand, the hydrophobic PHEMA-g-PCL brushes not only enhanced the stability and degradation morphology of the PDLLA coating layer, but also sustained SRL release for long-term. At 8-week of release test, the surface morphologies and release profiles of coated PDLLA layers verified the beneficial effect of hydrophobic PCL brushes as well as their thickness on coating stability. Our study concludes that 200nm thickness of PHEMA-g-PCL as interfacial layer affects the stability and degradation morphology of the biodegradable coating intensively to be applied for various biodegradable-based DESs.


Langmuir | 2014

Effect of solvent on drug release and a spray-coated matrix of a sirolimus-eluting stent coated with poly(lactic-co-glycolic acid).

Jiyeon Choi; Bu Nam Jang; Bang Ju Park; Dong Keun Han

Sirolimus (SRL) release from the biodegradable poly(l-lactic-co-glycolic acid) (PLGA) matrix was investigated for the application of drug-eluting stents (DES). In particular, this study focused on whether various organic solvents affect the interaction between SRL and PLGA and the formation of microstructures during ultrasonic coating. The SRL-loaded PLGA coated by tetrahydrofuran or acetone showed a significant initial burst, whereas that from acetonitrile was constantly released during a period of 21 days. On the basis of these results, the interactions at the molecular level of SRL with the polymer matrix were estimated according to various organic solvents. Although the topographies of the coated surface were obviously different, the correlation between surface roughness and SRL release was very poor. Irrespective of organic solvents, FT-IR data showed significantly weak SRL-PLGA interactions. From the result of wide-angle X-ray diffraction, it was confirmed that SRL was dispersed in an amorphous state in the polymer matrix after ultrasonic coating. The glass-transition temperature was also influenced by organic solvents, resulting in a plasticizing effect. The particle size of SRL appeared to determine the release profile from the PLGA matrix, which was the combination of diffusion and polymer degradation at an SRL size of more than 800 nm and the Fickian release at that of less than 300 nm. Therefore, organic solvents can lead to a heterogeneous microstructure in the SRL-loaded PLGA matrix, which is at or near the surface, consisting of aggregated drug- and polymer-rich regions. It is expected that the drug release can be controlled by physicochemical properties of organic solvents, and this study can be used effectively for localized drug release in biomedical devices such as drug-eluting stents.


Macromolecular Research | 2014

Fabrication and characteristics of anti-inflammatory magnesium hydroxide incorporated PLGA scaffolds formed with various porogen materials

Hye Won Lee; Seong Ho Seo; Chang Hun Kum; Bang Ju Park; Tae Il Son; Dong Keun Han

AbstractPoly(D,L-lactic-co-glycolic acid) (PLGA) has been widely used as a biodegradable polymer in the fabrication of porous polymer scaffolds, but it is hydrolyzed into acidic by-products such as glycolic acid and lactic acid in the human body. Magnesium hydroxide nanoparticles (Mg-NPs) were incorporated into a PLGA scaffold in order to neutralize the acidic environment caused by the hydrolysis of PLGA, thereby reducing the cytotoxicity and inflammatory response. In this study, three-dimensional porous scaffolds blended with 30% Mg-NP were fabricated using gas foaming (PLGA/Mg/NaHCO3), salt leaching (PLGA/Mg/NaCl), and freeze drying (PLGA/Mg/Ice), and their structures, morphologies, pH change, thermal properties, and mechanical properties were analyzed by Fourier transform infrared spectroscopy, scanning electron microscopy, pH meter, thermogravimetric analysis, and a universal testing machine. The porosity of the PLGA/Mg/Ice scaffold was higher at about 10-13 wt% than those of the PLGA/Mg/NaCl or PLGA/Mg/NaHCO3 scaffolds. The Mg-NP content of the PLGA/Mg/NaHCO3 scaffold remained lower than those of the other scaffolds at about 63%. As a result of this loss of Mg-NP, the PLGA/Mg/NaHCO3 scaffold was confirmed to have lower cell viability (about 70%) than the PLGA/Mg/Ice scaffold (about 100%), owing to the reduced neutralizing effect. Although the PLGA/Mg/Ice and PLGA/Mg/NaCl scaffolds showed similar cell viability, the NaCl of the PLGA/Mg/NaCl scaffold exhibited slight toxicity in the body. The expression level of interleukin-6 (IL-6) was significantly decreased in the PLGA/Mg/Ice scaffold than in the PLGA/Ice scaffold, but the PLGA/Mg/Ice scaffold exhibited an IL-6 expression level that was about 10% lower than that of the PLGA/Mg/ NaCl scaffold. Consequently, the addition of Mg-NP/Ice could conceivably reduce the expression level of IL-6 in PLGA scaffolds. This anti-inflammatory PLGA/Mg/Ice scaffold is therefore expected to show great promise when used as a template in tissue engineering.


Langmuir | 2014

Reinforcement of interfacial adhesion of a coated polymer layer on a cobalt-chromium surface for drug-eluting stents.

Tarek M. Bedair; Youngjin Cho; Tae Jung Kim; Young Dong Kim; Bang Ju Park; Dong Keun Han

During the balloon expansion of several commercially available drug-eluting stents, various types of defects in the polymer layer have been observed. The aim of this study is to prevent these defects by increasing the interfacial adhesion between the metal substrate and the drug-in-polymer matrix using poly(caprolactone) (PCL) brushes onto a cobalt-chromium (Co-Cr or CC) alloy surface. The chemical modification of the Co-Cr surface was accomplished by grafting ricinoleic acid (RA) onto the metal substrate followed by surface-initiated ring opening polymerization of ε-caprolactone. The unmodified, RA-grafted (CC-RA), and PCL-grafted Co-Cr substrates (CC-RA-PCL3D and CC-RA-PCL6D) were characterized by various surface analyses. Poly(d,l-lactide) containing sirolimus was spray coated onto the unmodified and modified substrates. The adhesion property of the polymer coating on the PCL-grafted surfaces was improved compared to those of other samples. Among all of the drug-in-polymer coated samples, both CC-RA-PCL3D and CC-RA-PCL6D exhibited a stabilized drug release profile over 49 days. It was also revealed that CC-RA-PCL6D showed the slowest drug release of all the samples. On the basis of these results, the proposed nanocoupling method has shown not only improved adhesion of the drug-in-polymer matrix to the Co-Cr substrate but also controlled drug release.


Journal of Bioactive and Compatible Polymers | 2014

Crack prevention of biodegradable polymer coating on metal facilitated by a nano-coupled interlayer

Youngjin Cho; Bach Quang Vu; Tarek M. Bedair; Bang Ju Park; Dong Keun Han

Crack prevention of biodegradable polymer coatings on drug-eluting stents was investigated by introducing a nano-coupled layer at the interface between the metal surface and the polymer coating layer using surface-initiated ring-opening polymerization of ε-caprolactone. Poly(d,l-lactide-co-glycolide) coating on cobalt-chromium control and ricinoleic acid-poly(caprolactone)–grafted cobalt-chromium was carried out using electrospraying. The cracking of the biodegradable polymer coating on drug-eluting stents during ballooning was addressed by introducing a nano-coupled interlayer on the cobalt-chromium surface. The ricinoleic acid-poly(caprolactone) nano-coupled interlayer and poly(d,l-lactide-co-glycolide)-coated top layer were characterized using attenuated total reflection Fourier transform infrared, contact angle, ellipsometry, X-ray photoelectron spectroscopy, and atomic force microscopy. Based on scratch tests, the nano-coupled samples had stronger interfacial adhesion compared to the control sample without the nano-coupled layer. Scanning electron microscope images indicated that the cracking on the poly(d,l-lactide-co-glycolide) coating was addressed. Introducing a nano-coupling interlayer may be an important strategy to preventing polymer coating cracking on drug-eluting stents.


Materials Science and Engineering: C | 2017

The effect of solvents and hydrophilic additive on stable coating and controllable sirolimus release system for drug-eluting stent

Seong Min Kim; Sung-Bin Park; Tarek M. Bedair; Man-Ho Kim; Bang Ju Park; Dong Keun Han

Various drug-eluting stents (DESs) have been developed to prevent restenosis after stent implantation. However, DES still needs to improve the drug-in-polymer coating stability and control of drug release for effective clinical treatment. In this study, the cobalt-chromium (CoCr) alloy surface was coated with biodegradable poly(D,L-lactide) (PDLLA) and sirolimus (SRL) mixed with hydrophilic Pluronic F127 additive by using ultrasonic spray coating system in order to achieve a stable coating surface and control SRL release. The degradation of PDLLA/SRL coating was studied under physiological solution. It was found that adding F127 reduced the degradation of PDLLA and improved the coating stability during 60days. The effects of organic solvent such as chloroform and tetrahydrofuran (THF) on the coating uniformity were also examined. It was revealed that THF produced a very smooth and uniform coating compared to chloroform. The patterns of in vitro drug release according to the type of organic solvent and hydrophilic additive proposed the possibility of controllable drug release design in DES. It was found that using F127 the drug release was sustained regardless of the organic solvent used. In addition, THF was able to get faster and controlled release profile when compared to chloroform. The structure of SRL molecules in different organic solvents was investigated using ultra-small angle neutron scattering. Furthermore, the structure of SRL is concentration-dependent in chloroform with tight nature under high concentration, but concentration-independent in THF. These results strongly demonstrated that coating stability and drug release patterns can be changed by physicochemical properties of various parameters such as organic solvents, additive, and coating strategy.


Macromolecular Research | 2015

Effect of stromal cell derived factor-1α release from heparin-coated Co-Cr stent substrate on the recruitment of endothelial progenitor cells

Sung Nam Kang; Chungwon Park; Seong Min Kim; Ki Wan Park; Bang Ju Park; Dong Keun Han

The restoration of a damaged endothelium might be a fascinating way to reduce significantly late-thrombosis and restenosis in the stent treatment. It has been recently reported that the recruitment of endothelial progenitor cells (EPCs), capable for repairing a damaged endothelium, can be important in the vascular stent application. Therefore, we focused on the hypothesis that stromal cell-derived factor-1α (SDF-1α) acts as a key chemokine for the mobilization and recruitment of EPCs to the damaged endothelium lesion. In this study, the effect of SDF-1α released from a cobalt-chromium alloy (Co-Cr) plate, vascular stent material, was investigated on the recruitment of EPCs in vitro. Dopamine-conjugated heparin was synthesized to introduce heparin onto Co-Cr. Heparin-coated Co-Cr surfaces were examined by water contact angle and attenuated total reflectance-Fourier transform infrared (ATRFTIR) to prove successful coating of heparin. Finally, SDF-1α was bound to the coated heparin derivative. Amounts of loaded and released SDF-1α were measured by ELISA, and the recruited EPC by released SDF-1α was evaluated using two different migration assays. The quantity of SDF-1α bound to the heparin-modified surface increased in a concentration-dependent manner and SDF-1α was released over 28 days. Transwell migration assay revealed that soluble SDF-1α released from the heparin-coated Co-Cr induced significantly more EPC recruitment than bare Co-Cr and heparin-coated Co-Cr. More importantly, fibrin gel migration assay further demonstrated that EPCs evidently respond to heparin-based substrate with SDF-1α and this type of behaviors was surprisingly found at as low level as less 1 ng/day of SDF-1α. These results are strongly encouraging for further in vitro and in vivo studies.


Macromolecular Research | 2014

Effect of magnesium hydroxide nanoparticles with rod and plate shape on mechanical and biological properties of poly(L-lactide) composites

Chang Hun Kum; Seong Ho Seo; Sung Nam Kang; Bang Ju Park; Dong June Ahn; Dong Keun Han

Two kinds of magnesium hydroxide (Mg(OH)2) rods (Mg-Rod, 150 and 350 nm in size) and plates (Mg-PL, 60 and 300 nm) were prepared, and blended with poly(L-lactide) (PLLA) to obtain PLLA/Mg(OH)2 composites to investigate the effect of the shape and size of Mg(OH)2 particles. The structure, morphology, pH change, thermal and mechanical properties, cytotoxicity, and inflammation of Mg(OH)2 control and PLLA/Mg(OH)2 composites were evaluated. PLLA/Mg-Rod150 (30%) composite showed a 50% higher tensile strength and a 45% improved modulus as compared with PLLA/Mg-PL300 30% composite. Although Mg-Rods displayed similar cell viability (above 80%) as compared to Mg-PLs, the expression levels of TNF-α from Mg-PL60 gradually increased with increasing concentrations from 1 to 300 μg. This indicates that Mg-PL60 had a potential cytotoxicity due to endocytosis. In addition, the byproduct of PLLA/Mg-Rods composite was more effectively neutralized than that of the PLLA/Mg-PLs composite, but cell viability and the expression levels of TNF-α were similar. Therefore, the use of our PLLA/Mg-Rod composite system would be a promising strategy to prevent the current fatal problems in biomedical applications including biodegradable implants such as stents.


Macromolecular Research | 2017

Silicone rubber with mussel-inspired adhesive coatings for enhancing antifouling property and blood compatibility

Youngjin Cho; Si Yoong Seo; Bang Ju Park; Dong Keun Han

Silicone rubber is widely used in various biomedical fields. However, the silicone surface is known to cause biofouling and thrombosis issues due to its higher hydrophobic property. In this study, to improve its antifouling property and blood compatibility, silicone rubber was modified by coating of hyaluronic acid (HA) or poly(ethylene glycol) (PEG). To enhance adhesive property of HA and PEG on the silicone surface, HA and PEG were modified by introducing the amino groups of dopamine (DA) to the carboxyl group of each polymer. The modified HA (HA-DA) and PEG (PEG-DA) were confirmed by 1H nuclear magnetic resonance (NMR) and the coated surfaces were characterized with contact angle, X-ray photoelectron spectroscopy (XPS), and micro-bicinchoninic acid (micro-BCA) analyses. To compare antifouling property and blood compatibility, adsorbed proteins, adhered platelets, and anticoagulation on the modified surfaces were evaluated by fluorescence microscopy, scanning electron microscopy, and activated partial thromboplastin time (APTT) assay, respectively. The property of cell adhesion on the modified surface was evaluated by NIH 3T3 fibroblast as a model cell system. Protein, platelet, and fibroblast showed low adsorption and adhesion on the modified silicone rubber surfaces compared to the unmodified one. Especially, the third coated silicone rubber surfaces were found to strongly resist protein adsorption as well as platelet and fibroblast adhesion. These results indicated that the antifouling property and blood compatibility were enhanced significantly on HA-DA and PEG-DA immobilized silicone rubbers. Therefore, these modified silicone rubbers can be used in various biomedical applications.

Collaboration


Dive into the Bang Ju Park's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tarek M. Bedair

Korea Institute of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Youngjin Cho

Seoul National University Bundang Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sung Nam Kang

Korea Institute of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Chang Hun Kum

Korea Institute of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Jiyeon Choi

Korea Institute of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Seong Ho Seo

Korea Institute of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Bach Quang Vu

Korea Institute of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Chungwon Park

Korea Institute of Science and Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge