Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Tarek M. Bedair is active.

Publication


Featured researches published by Tarek M. Bedair.


Colloids and Surfaces B: Biointerfaces | 2014

Biodegradable polymer brush as nanocoupled interface for improving the durability of polymer coating on metal surface.

Tarek M. Bedair; Youngjin Cho; Dong Keun Han

Metal-based drug-eluting stents (DESs) have severe drawbacks such as peeling-off and cracking of the coated polymer. To prevent the fracture of polymer-coated layer and improve the durability of DES, poly(l-lactide) (PLLA) brushes were synthesized onto cobalt-chromium (Co-Cr or CC) surface through atom transfer radical polymerization (ATRP) of 2-hydroxyethylmethacrylate (HEMA) followed by surface-initiated ring opening polymerization (SI-ROP) of l-lactide. The polymer brushes were then characterized by attenuated total reflection-Fourier transform infrared (ATR-FTIR), water contact angle, ellipsometry, X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), and scanning electron microscopy (SEM). All of the unmodified and modified Co-Cr surfaces were coated with a matrix of poly(d,l-lactide) (PDLLA) and sirolimus (SRL). The in vitro drug release profile was measured for 70 days. The PLLA-modified Co-Cr showed a biphasic release pattern in the initial burst followed by a slow release. On the other hand, the unmodified Co-Cr showed fast drug release and detachment of the coated polymer layer due to the instability of the polymer layer on Co-Cr surface. In comparison, the PLLA-modified Co-Cr preserved a uniform coating without detachment even after 6 weeks of degradation test. The platelet morphology and low density of platelet adhered on the modified layer and the SRL-in-PDLLA coated Co-Cr surfaces demonstrated that these samples would be blood compatible. Therefore, the introduction of PLLA brush onto Co-Cr surface is proved to dramatically improve the durability of the coating layer, and it is a promising strategy to prevent the coating defects found in DESs.


Journal of Colloid and Interface Science | 2015

Effects of interfacial layer wettability and thickness on the coating morphology and sirolimus release for drug-eluting stent.

Tarek M. Bedair; Seung Jung Yu; Sung Gap Im; Bang Ju Park; Dong Keun Han

Drug-eluting stents (DESs) have been used to treat coronary artery diseases by placing in the arteries. However, current DESs still suffer from polymer coating defects such as delamination and peeling-off that follows stent deployment. Such coating defects could increase the roughness of DES and might act as a source of late or very late thrombosis and might increase the incident of restenosis. In this regard, we modified the cobalt-chromium (Co-Cr) alloy surface with hydrophilic poly(2-hydroxyethyl methacrylate) (PHEMA) or hydrophobic poly(2-hydroxyethyl methacrylate)-grafted-poly(caprolactone) (PHEMA-g-PCL) brushes. The resulting surfaces were biocompatible and biodegradable, which could act as anchoring layer for the drug-in-polymer matrix coating. The two modifications were characterized by ATR-FTIR, XPS, water contact angle measurements, SEM and AFM. On the control and modified Co-Cr samples, a sirolimus (SRL)-containing poly(D,L-lactide) (PDLLA) were ultrasonically spray-coated, and the drug release was examined for 8weeks under physiological conditions. The results demonstrated that PHEMA as a primer coating improved the coating stability and degradation morphology, and drug release profile for short-term as compared to control Co-Cr, but fails after 7weeks in physiological buffer. On the other hand, the hydrophobic PHEMA-g-PCL brushes not only enhanced the stability and degradation morphology of the PDLLA coating layer, but also sustained SRL release for long-term. At 8-week of release test, the surface morphologies and release profiles of coated PDLLA layers verified the beneficial effect of hydrophobic PCL brushes as well as their thickness on coating stability. Our study concludes that 200nm thickness of PHEMA-g-PCL as interfacial layer affects the stability and degradation morphology of the biodegradable coating intensively to be applied for various biodegradable-based DESs.


Langmuir | 2014

Reinforcement of interfacial adhesion of a coated polymer layer on a cobalt-chromium surface for drug-eluting stents.

Tarek M. Bedair; Youngjin Cho; Tae Jung Kim; Young Dong Kim; Bang Ju Park; Dong Keun Han

During the balloon expansion of several commercially available drug-eluting stents, various types of defects in the polymer layer have been observed. The aim of this study is to prevent these defects by increasing the interfacial adhesion between the metal substrate and the drug-in-polymer matrix using poly(caprolactone) (PCL) brushes onto a cobalt-chromium (Co-Cr or CC) alloy surface. The chemical modification of the Co-Cr surface was accomplished by grafting ricinoleic acid (RA) onto the metal substrate followed by surface-initiated ring opening polymerization of ε-caprolactone. The unmodified, RA-grafted (CC-RA), and PCL-grafted Co-Cr substrates (CC-RA-PCL3D and CC-RA-PCL6D) were characterized by various surface analyses. Poly(d,l-lactide) containing sirolimus was spray coated onto the unmodified and modified substrates. The adhesion property of the polymer coating on the PCL-grafted surfaces was improved compared to those of other samples. Among all of the drug-in-polymer coated samples, both CC-RA-PCL3D and CC-RA-PCL6D exhibited a stabilized drug release profile over 49 days. It was also revealed that CC-RA-PCL6D showed the slowest drug release of all the samples. On the basis of these results, the proposed nanocoupling method has shown not only improved adhesion of the drug-in-polymer matrix to the Co-Cr substrate but also controlled drug release.


Journal of Bioactive and Compatible Polymers | 2014

Crack prevention of biodegradable polymer coating on metal facilitated by a nano-coupled interlayer

Youngjin Cho; Bach Quang Vu; Tarek M. Bedair; Bang Ju Park; Dong Keun Han

Crack prevention of biodegradable polymer coatings on drug-eluting stents was investigated by introducing a nano-coupled layer at the interface between the metal surface and the polymer coating layer using surface-initiated ring-opening polymerization of ε-caprolactone. Poly(d,l-lactide-co-glycolide) coating on cobalt-chromium control and ricinoleic acid-poly(caprolactone)–grafted cobalt-chromium was carried out using electrospraying. The cracking of the biodegradable polymer coating on drug-eluting stents during ballooning was addressed by introducing a nano-coupled interlayer on the cobalt-chromium surface. The ricinoleic acid-poly(caprolactone) nano-coupled interlayer and poly(d,l-lactide-co-glycolide)-coated top layer were characterized using attenuated total reflection Fourier transform infrared, contact angle, ellipsometry, X-ray photoelectron spectroscopy, and atomic force microscopy. Based on scratch tests, the nano-coupled samples had stronger interfacial adhesion compared to the control sample without the nano-coupled layer. Scanning electron microscope images indicated that the cracking on the poly(d,l-lactide-co-glycolide) coating was addressed. Introducing a nano-coupling interlayer may be an important strategy to preventing polymer coating cracking on drug-eluting stents.


Materials Science and Engineering: C | 2017

The effect of solvents and hydrophilic additive on stable coating and controllable sirolimus release system for drug-eluting stent

Seong Min Kim; Sung-Bin Park; Tarek M. Bedair; Man-Ho Kim; Bang Ju Park; Dong Keun Han

Various drug-eluting stents (DESs) have been developed to prevent restenosis after stent implantation. However, DES still needs to improve the drug-in-polymer coating stability and control of drug release for effective clinical treatment. In this study, the cobalt-chromium (CoCr) alloy surface was coated with biodegradable poly(D,L-lactide) (PDLLA) and sirolimus (SRL) mixed with hydrophilic Pluronic F127 additive by using ultrasonic spray coating system in order to achieve a stable coating surface and control SRL release. The degradation of PDLLA/SRL coating was studied under physiological solution. It was found that adding F127 reduced the degradation of PDLLA and improved the coating stability during 60days. The effects of organic solvent such as chloroform and tetrahydrofuran (THF) on the coating uniformity were also examined. It was revealed that THF produced a very smooth and uniform coating compared to chloroform. The patterns of in vitro drug release according to the type of organic solvent and hydrophilic additive proposed the possibility of controllable drug release design in DES. It was found that using F127 the drug release was sustained regardless of the organic solvent used. In addition, THF was able to get faster and controlled release profile when compared to chloroform. The structure of SRL molecules in different organic solvents was investigated using ultra-small angle neutron scattering. Furthermore, the structure of SRL is concentration-dependent in chloroform with tight nature under high concentration, but concentration-independent in THF. These results strongly demonstrated that coating stability and drug release patterns can be changed by physicochemical properties of various parameters such as organic solvents, additive, and coating strategy.


Journal of Tissue Engineering | 2017

Recent advances to accelerate re-endothelialization for vascular stents

Tarek M. Bedair; Mahmoud A. Elnaggar; Dong Keun Han

Cardiovascular diseases are considered as one of the serious diseases that leads to the death of millions of people all over the world. Stent implantation has been approved as an easy and promising way to treat cardiovascular diseases. However, in-stent restenosis and thrombosis remain serious problems after stent implantation. It was demonstrated in a large body of previously published literature that endothelium impairment represents a major factor for restenosis. This discovery became the driving force for many studies trying to achieve an optimized methodology for accelerated re-endothelialization to prevent restenosis. Thus, in this review, we summarize the different methodologies opted to achieve re-endothelialization, such as, but not limited to, manipulation of surface chemistry and surface topography.


Bioorganic & Medicinal Chemistry Letters | 2015

Targeting EGFR/HER2 tyrosine kinases with a new potent series of 6-substituted 4-anilinoquinazoline hybrids: Design, synthesis, kinase assay, cell-based assay, and molecular docking.

Ahmed Elkamhawy; Ahmed Karam Farag; Ambily Nath Indu Viswanath; Tarek M. Bedair; Dong Gyu Leem; Kyung-Tae Lee; Ae Nim Pae; Eun Joo Roh

Coexpression of EGFR and HER2 has been found in many tumors such as breast, ovarian, colon and prostate cancers, with poor prognosis of the patients. Herein, our team has designed and synthesized new eighteen compounds with 6-substituted 4-anilinoquinazoline core to selectively inhibit EGFR/HER2 tyrosine kinases. Twelve compounds (8a-8d, 9a, 9c, 9d, 10a, 10c, 11b, 14, and 15) showed nanomolar range of IC50 values on EGFR and/or HER2 kinases. Accordingly, a detailed structure activity relationship (SAR) was established. A molecular docking study demonstrated the favorable binding modes of 8d, 9b, 9d and 10d at the ATP active site of both kinases. A kinase selectivity profile performed for compound 8d showed great selectivity for EGFR and HER2. In addition, 8d, 9c, and 9d exerted selective promising cytotoxic activity over BT-474 cell line with IC50 values of 2.70, 1.82 and 1.95 μM, respectively. From these results, we report analogs 8d, 9c, and 9d as promising candidates for the discovery of well-balanced compounds in terms of the kinase inhibitory potency and antiproliferative activity.


Journal of Biomaterials Applications | 2018

Sustained drug release using cobalt oxide nanowires for the preparation of polymer-free drug-eluting stents

Tarek M. Bedair; Il Jae Min; Wooram Park; Dong Keun Han

Polymer-based drug-eluting stents (DESs) represented attractive application for the treatment of cardiovascular diseases; however, polymer coating has caused serious adverse responses to tissues such as chronic inflammation due to acidic by-products. Therefore, polymer-free DESs have recently emerged as promising candidates for the treatment; however, burst release of drug(s) from the surface limited its applications. In this study, we focused on delivery of therapeutic drug from polymer-free (or -less) DESs through surface modification using cobalt oxide nanowires (Co3O4 NWs) to improve and control the drug release. The results demonstrated that Co3O4 NWs could be simply fabricated on cobalt–chromium substrate by ammonia-evaporation-induced method. The Co3O4 NWs were uniformly arrayed with diameters of 50–100 nm and lengths of 10 µm. It was found that Co3O4 NWs were comparatively stable without any delamination or change of the morphology under in vitro long-term stability using circulating system. Sirolimus was used as a model drug for studying in vitro release behavior under physiological conditions. The sirolimus release behavior from flat cobalt–chromium showed an initial burst (over 90%) after one day. On the other hand, Co3O4 NWs presented a sustained sirolimus release rate for up to seven days. Similarly, the polymer-less specimens on Co3O4 NWs substrates sustained sirolimus release for a longer-period of time when compared to flat Co–Cr substrates. In summary, the current approach of using Co3O4 NWs-based substrates might have a great potential to sustain drug release for drug-eluting implants and medical devices including stents.


Biomaterials and Biomedical Engineering | 2014

Coating defects in polymer-coated drug-eluting stents

Tarek M. Bedair; Youngjin Cho; Bang Ju Park; Dong Keun Han


Journal of Industrial and Engineering Chemistry | 2018

Biodegradable sheath-core biphasic monofilament braided stent for bio-functional treatment of esophageal strictures

Cheol-Min Han; Eugene Lih; Seul-Ki Choi; Tarek M. Bedair; Young-Jae Lee; Wooram Park; Dong Keun Han; Jun Sik Son

Collaboration


Dive into the Tarek M. Bedair's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Youngjin Cho

Seoul National University Bundang Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ae Nim Pae

Korea Institute of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Ahmed Elkamhawy

Korea Institute of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Ahmed Karam Farag

Korea Institute of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Ambily Nath Indu Viswanath

Korea Institute of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Bach Quang Vu

Korea Institute of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Cheol-Min Han

Korea Institute of Science and Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge