Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Bang-Lin Wan is active.

Publication


Featured researches published by Bang-Lin Wan.


Journal of Medicinal Chemistry | 2010

Discovery of Vaniprevir (MK-7009), a Macrocyclic Hepatitis C Virus NS3/4a Protease Inhibitor

John A. McCauley; Charles J. Mcintyre; Michael T. Rudd; Kevin Nguyen; Joseph J. Romano; John W. Butcher; Kevin F. Gilbert; Kimberly J. Bush; M. Katharine Holloway; John Swestock; Bang-Lin Wan; Steven S. Carroll; Jillian DiMuzio; Donald J. Graham; Steven W. Ludmerer; Shi-Shan Mao; Mark Stahlhut; Christine Fandozzi; Nicole Trainor; David B. Olsen; Joseph P. Vacca; Nigel J. Liverton

A new class of HCV NS3/4a protease inhibitors which contain a P2 to P4 macrocyclic constraint was designed using a molecular-modeling derived strategy. Exploration of the P2 heterocyclic region, the P2 to P4 linker, and the P1 side chain of this class of compounds via a modular synthetic strategy allowed for the optimization of enzyme potency, cellular activity, and rat liver exposure following oral dosing. These studies led to the identification of clinical candidate 35b (vaniprevir, MK-7009), which is active against both the genotype 1 and genotype 2 NS3/4a protease enzymes and has good plasma exposure and excellent liver exposure in multiple species.


Journal of the American Chemical Society | 2008

Molecular Modeling Based Approach to Potent P2−P4 Macrocyclic Inhibitors of Hepatitis C NS3/4A Protease

Nigel J. Liverton; M. Katharine Holloway; John A. McCauley; Michael T. Rudd; John W. Butcher; Steven S. Carroll; Jillian DiMuzio; Christine Fandozzi; Kevin F. Gilbert; Shi-Shan Mao; Charles J. Mcintyre; Kevin Nguyen; Joseph J. Romano; Mark Stahlhut; Bang-Lin Wan; and David B. Olsen; Joseph P. Vacca

Molecular modeling of inhibitor bound full length HCV NS3/4A protease structures proved to be a valuable tool in the design of a new series of potent NS3 protease inhibitors. Optimization of initial compounds provided 25a. The in vitro activity and selectivity as well as the rat pharmacokinetic profile of 25a compare favorably with the data for other NS3/4A protease inhibitors currently in clinical development for the treatment of HCV.


Journal of Medicinal Chemistry | 2008

Discovery of 3-{5-[(6-amino-1H-pyrazolo[3,4-b]pyridine-3-yl)methoxy]-2-chlorophenoxy}-5-chlorobenzonitrile (MK-4965): a potent, orally bioavailable HIV-1 non-nucleoside reverse transcriptase inhibitor with improved potency against key mutant viruses.

Thomas J. Tucker; John T. Sisko; Robert M. Tynebor; Theresa M. Williams; Peter J. Felock; Jessica A. Flynn; Ming-Tain Lai; Yuexia Liang; Georgia B. McGaughey; Meiquing Liu; Mike Miller; Gregory Moyer; Vandna Munshi; Rebecca Perlow-Poehnelt; Sridhar Prasad; John Reid; Rosa Sanchez; Maricel Torrent; Joseph P. Vacca; Bang-Lin Wan; Youwei Yan

Non-nucleoside reverse transcriptase inhibitors (NNRTIs) have been shown to be a key component of highly active antiretroviral therapy (HAART). The use of NNRTIs has become part of standard combination antiviral therapies producing clinical outcomes with efficacy comparable to other antiviral regimens. There is, however, a critical issue with the emergence of clinical resistance, and a need has arisen for novel NNRTIs with a broad spectrum of activity against key HIV-1 RT mutations. Using a combination of traditional medicinal chemistry/SAR analyses, crystallography, and molecular modeling, we have designed and synthesized a series of novel, highly potent NNRTIs that possess broad spectrum antiviral activity and good pharmacokinetic profiles. Further refinement of key compounds in this series to optimize physical properties and pharmacokinetics has resulted in the identification of 8e (MK-4965), which has high levels of potency against wild-type and key mutant viruses, excellent oral bioavailability and overall pharmacokinetics, and a clean ancillary profile.


Bioorganic & Medicinal Chemistry Letters | 2008

The design and synthesis of diaryl ether second generation HIV-1 non-nucleoside reverse transcriptase inhibitors (NNRTIs) with enhanced potency versus key clinical mutations.

Thomas J. Tucker; Sandeep Saggar; John T. Sisko; Robert M. Tynebor; Theresa M. Williams; Peter J. Felock; Jessica A. Flynn; Ming-Tain Lai; Yuexia Liang; Georgia B. McGaughey; Meiquing Liu; Mike Miller; Gregory Moyer; Vandna Munshi; Rebecca Perlow-Poehnelt; Sridhar Prasad; Rosa Sanchez; Maricel Torrent; Joseph P. Vacca; Bang-Lin Wan; Youwei Yan

Using a combination of traditional Medicinal Chemistry/SAR analysis, crystallography, and molecular modeling, we have designed and synthesized a series of novel, highly potent NNRTIs that possess broad antiviral activity against a number of key clinical mutations.


Journal of Medicinal Chemistry | 2009

Biaryl Ethers as Novel Non-nucleoside Reverse Transcriptase Inhibitors with Improved Potency against Key Mutant Viruses

Dai-Shi Su; John J. Lim; Elizabeth Tinney; Bang-Lin Wan; Mary Beth Young; Kenneth D. Anderson; Deanne Rudd; Vandna Munshi; Carolyn Bahnck; Peter J. Felock; Meiquing Lu; Ming-Tain Lai; Sinoeun Touch; Gregory Moyer; Daniel DiStefano; Jessica A. Flynn; Yuexia Liang; Rosa Sanchez; Rebecca Perlow-Poehnelt; Mike Miller; Joe P. Vacca; Theresa M. Williams; Neville J. Anthony

Biaryl ethers were recently reported as potent NNRTIs. Herein we disclose a detailed SAR study that led to the biaryl ether 6. This compound possessed excellent potency against WT RT and key clinically observed RT mutants and had an excellent pharmacokinetic profile in rats, dogs, and rhesus macaques. The compound also exhibited a clean safety profile in preclinical safety studies.


Bioorganic & Medicinal Chemistry Letters | 2009

Substituted tetrahydroquinolines as potent allosteric inhibitors of reverse transcriptase and its key mutants

Dai-Shi Su; John J. Lim; Elizabeth Tinney; Bang-Lin Wan; Mary Beth Young; Kenneth D. Anderson; Deanne Rudd; Vandna Munshi; Carolyn Bahnck; Peter J. Felock; Meiqing Lu; Ming-Tain Lai; Sinoeun Touch; Gregory Moyer; Daniel J. DiStefano; Jessica A. Flynn; Yuexia Liang; Rosa Sanchez; Sridhar Prasad; Youwei Yan; Rebecca Perlow-Poehnelt; Maricel Torrent; Mike Miller; Joe P. Vacca; Theresa M. Williams; Neville J. Anthony

Non-nucleoside reverse transcriptase inhibitors (NNRTIs) are key elements of multidrug regimens, called HAART (Highly Active Antiretroviral Therapy), that are used to treat HIV-1 infections. Elucidation of the structure-activity relationships of the thiocarbamate moiety of the previous published lead compound 2 provided a series of novel tetrahydroquinoline derivatives as potent inhibitors of HIV-1 RT with nanomolar intrinsic activity on the WT and key mutant enzymes and potent antiviral activity in infected cells. The SAR optimization, mutation profiles, preparation of compounds, and pharmacokinetic profile of compounds are described.


Journal of Medicinal Chemistry | 2011

Design and synthesis of conformationally constrained inhibitors of non-nucleoside reverse transcriptase.

Robert P. Gomez; Samson J. Jolly; Theresa M. Williams; Joseph P. Vacca; Maricel Torrent; Georgia B Mcgaughey; Ming-Tain Lai; Peter J. Felock; Vandna Munshi; Daniel DiStefano; Jessica A. Flynn; Mike Miller; Youwei Yan; John Reid; Rosa Sanchez; Yuexia Liang; Brenda Paton; Bang-Lin Wan; Neville J. Anthony

Highly active antiretroviral therapy (HAART) significantly reduces human immunodeficiency virus (HIV) viral load and has led to a dramatic decrease in acquired immunodeficiency syndrome (AIDS) related mortality. Despite this success, there remains a critical need for new HIV therapies to address the emergence of drug resistant viral strains. Next generation NNRTIs are sought that are effective against these mutant forms of the HIV virus. The bound conformations of our lead inhibitors, MK-1107 (1) and MK-4965 (2), were divergent about the oxymethylene linker, and each of these conformations was rigidified using two isomeric cyclic constraints. The constraint derived from the bioactive conformation of 2provided novel, highly potent NNRTIs that possess broad spectrum antiviral activity and good pharmacokinetic profiles. Systematic SAR led to the identification of indazole as the optimal conformational constraint to provide MK-6186 (3) and MK-7445 (6). Despite their reduced flexibility, these compounds had potency comparable to that of the corresponding acyclic ethers in both recombinant enzyme and cell based assays against both the wild-type and the clinically relevant mutant strains.


ACS Medicinal Chemistry Letters | 2011

Discovery of MK-1220: A Macrocyclic Inhibitor of Hepatitis C Virus NS3/4A Protease with Improved Preclinical Plasma Exposure

Michael T. Rudd; John A. McCauley; John W. Butcher; Joseph J. Romano; Charles J. Mcintyre; Kevin Nguyen; Kevin F. Gilbert; Kimberly J. Bush; M. Katharine Holloway; John Swestock; Bang-Lin Wan; Steven S. Carroll; Jillian DiMuzio; Donald J. Graham; Steven W. Ludmerer; Mark Stahlhut; Christine Fandozzi; Nicole Trainor; David B. Olsen; Joseph P. Vacca; Nigel J. Liverton

The discovery of MK-1220 is reported along with the development of a series of HCV NS3/4A protease inhibitors containing a P2 to P4 macrocyclic constraint with improved preclinical pharmacokinetics. Optimization of the P2 heterocycle substitution pattern as well as the P3 amino acid led to compounds with greatly improved plasma exposure following oral dosing in both rats and dogs while maintaining excellent enzyme potency and cellular activity. These studies led to the identification of MK-1220.


Bioorganic & Medicinal Chemistry Letters | 2011

Design and synthesis of pyridone inhibitors of non-nucleoside reverse transcriptase.

Robert P. Gomez; Samson M. Jolly; Theresa M. Williams; Thomas J. Tucker; Robert M. Tynebor; Joe P. Vacca; Georgia B. McGaughey; Ming-Tain Lai; Peter J. Felock; Vandna Munshi; Daniel DeStefano; Sinoeun Touch; Mike Miller; Youwei Yan; Rosa Sanchez; Yuexia Liang; Brenda Paton; Bang-Lin Wan; Neville J. Anthony

Next generation NNRTIs are sought which possess both broad spectrum antiviral activity against key mutant strains and a high genetic barrier to the selection of new mutant viral strains. Pyridones were evaluated as an acyclic conformational constraint to replace the aryl ether core of MK-4965 (1) and the more rigid indazole constraint of MK-6186 (2). The resulting pyridone compounds are potent inhibitors of HIV RT and have antiviral activity in cell culture that is superior to other next generation NNRTIs.


Bioorganic & Medicinal Chemistry Letters | 2010

Biaryl ethers as potent allosteric inhibitors of reverse transcriptase and its key mutant viruses: Aryl substituted pyrazole as a surrogate for the pyrazolopyridine motif

Dai-Shi Su; John J. Lim; Elizabeth Tinney; Thomas J. Tucker; Sandeep Saggar; John T. Sisko; Bang-Lin Wan; Mary Beth Young; Kenneth D. Anderson; Deanne Rudd; Vandna Munshi; Carolyn Bahnck; Peter J. Felock; Meiquing Lu; Ming-Tain Lai; Sinoeun Touch; Gregory Moyer; Daniel J. DiStefano; Jessica A. Flynn; Yuexia Liang; Rosa Sanchez; Rebecca Perlow-Poehnelt; Mike Miller; Joe P. Vacca; Theresa M. Williams; Neville J. Anthony

Biaryl ethers were recently reported as potent NNRTIs. Herein, we disclose a detailed effort to modify the previously reported compound 1. We have designed and synthesized a series of novel pyrazole derivatives as a surrogate for pyrazolopyridine motif that were potent inhibitors of HIV-1 RT with nanomolar intrinsic activity on the WT and key mutant enzymes and potent antiviral activity in infected cells.

Collaboration


Dive into the Bang-Lin Wan's collaboration.

Top Co-Authors

Avatar

Mike Miller

United States Military Academy

View shared research outputs
Top Co-Authors

Avatar

Ming-Tain Lai

United States Military Academy

View shared research outputs
Top Co-Authors

Avatar

Peter J. Felock

United States Military Academy

View shared research outputs
Top Co-Authors

Avatar

Rosa Sanchez

United States Military Academy

View shared research outputs
Top Co-Authors

Avatar

Theresa M. Williams

United States Military Academy

View shared research outputs
Top Co-Authors

Avatar

Vandna Munshi

United States Military Academy

View shared research outputs
Top Co-Authors

Avatar

Yuexia Liang

United States Military Academy

View shared research outputs
Top Co-Authors

Avatar

Dai-Shi Su

United States Military Academy

View shared research outputs
Researchain Logo
Decentralizing Knowledge