Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Baoming Qin is active.

Publication


Featured researches published by Baoming Qin.


Cell Stem Cell | 2010

A Mesenchymal-to-Epithelial Transition Initiates and Is Required for the Nuclear Reprogramming of Mouse Fibroblasts

Ronghui Li; Jialiang Liang; Su Ni; Ting Zhou; Xiaobing Qing; Huapeng Li; Wenzhi He; Jiekai Chen; Feng Li; Qiang Zhuang; Baoming Qin; Jianyong Xu; Wen Li; Jiayin Yang; Yi Gan; Dajiang Qin; Shipeng Feng; Hong Song; Dongshan Yang; Biliang Zhang; Lingwen Zeng; Liangxue Lai; Miguel A. Esteban; Duanqing Pei

Epithelial-to-mesenchymal transition (EMT) is a developmental process important for cell fate determination. Fibroblasts, a product of EMT, can be reset into induced pluripotent stem cells (iPSCs) via exogenous transcription factors but the underlying mechanism is unclear. Here we show that the generation of iPSCs from mouse fibroblasts requires a mesenchymal-to-epithelial transition (MET) orchestrated by suppressing pro-EMT signals from the culture medium and activating an epithelial program inside the cells. At the transcriptional level, Sox2/Oct4 suppress the EMT mediator Snail, c-Myc downregulates TGF-beta1 and TGF-beta receptor 2, and Klf4 induces epithelial genes including E-cadherin. Blocking MET impairs the reprogramming of fibroblasts whereas preventing EMT in epithelial cells cultured with serum can produce iPSCs without Klf4 and c-Myc. Our work not only establishes MET as a key cellular mechanism toward induced pluripotency, but also demonstrates iPSC generation as a cooperative process between the defined factors and the extracellular milieu. PAPERCLIP:


Cell Stem Cell | 2010

Vitamin C Enhances the Generation of Mouse and Human Induced Pluripotent Stem Cells

Miguel A. Esteban; Tao Wang; Baoming Qin; Jiayin Yang; Dajiang Qin; Jinglei Cai; Wen Li; Zhihui Weng; Jiekai Chen; Su Ni; Keshi Chen; Yuan Li; Xiaopeng Liu; Jianyong Xu; Shiqiang Zhang; Feng Li; Wenzhi He; Krystyna Labuda; Yancheng Song; Anja Peterbauer; Susanne Wolbank; Heinz Redl; Mei Zhong; Daozhang Cai; Lingwen Zeng; Duanqing Pei

Somatic cells can be reprogrammed into induced pluripotent stem cells (iPSCs) by defined factors. However, the low efficiency and slow kinetics of the reprogramming process have hampered progress with this technology. Here we report that a natural compound, vitamin C (Vc), enhances iPSC generation from both mouse and human somatic cells. Vc acts at least in part by alleviating cell senescence, a recently identified roadblock for reprogramming. In addition, Vc accelerates gene expression changes and promotes the transition of pre-iPSC colonies to a fully reprogrammed state. Our results therefore highlight a straightforward method for improving the speed and efficiency of iPSC generation and provide additional insights into the mechanistic basis of the reprogramming process.


Cell Stem Cell | 2011

The Histone Demethylases Jhdm1a/1b Enhance Somatic Cell Reprogramming in a Vitamin-C-Dependent Manner

Tao Wang; Keshi Chen; Xiaoming Zeng; Jianguo Yang; Yun Wu; Xi Shi; Baoming Qin; Lingwen Zeng; Miguel A. Esteban; Guangjin Pan; Duanqing Pei

Reprogramming of somatic cells into induced pluripotent stem cells (iPSCs) resets the epigenome to an embryonic-like state. Vitamin C enhances the reprogramming process, but the underlying mechanisms are unclear. Here we show that the histone demethylases Jhdm1a/1b are key effectors of somatic cell reprogramming downstream of vitamin C. We first observed that vitamin C induces H3K36me2/3 demethylation in mouse embryonic fibroblasts in culture and during reprogramming. We then identified Jhdm1a/1b, two known vitamin-C-dependent H3K36 demethylases, as potent regulators of reprogramming through gain- and loss-of-function approaches. Furthermore, we found that Jhdm1b accelerates cell cycle progression and suppresses cell senescence during reprogramming by repressing the Ink4/Arf locus. Jhdm1b also cooperates with Oct4 to activate the microRNA cluster 302/367, an integral component of the pluripotency machinery. Our results therefore reveal a role for H3K36me2/3 in cell fate determination and establish a link between histone demethylases and vitamin-C-induced reprogramming.


Journal of Biological Chemistry | 2011

Microrna cluster 302-367 enhances somatic cell reprogramming by accelerating a mesenchymal-to-epithelial transition

Baojian Liao; Xichen Bao; Longqi Liu; Shipeng Feng; Athanasios Zovoilis; Wenbo Liu; Yanting Xue; Jie Cai; Xiangpeng Guo; Baoming Qin; Ruosi Zhang; Jiayan Wu; Liangxue Lai; Maikun Teng; Liwen Niu; Biliang Zhang; Miguel A. Esteban; Duanqing Pei

MicroRNAs (miRNAs) are emerging critical regulators of cell function that frequently reside in clusters throughout the genome. They influence a myriad of cell functions, including the generation of induced pluripotent stem cells, also termed reprogramming. Here, we have successfully delivered entire miRNA clusters into reprogramming fibroblasts using retroviral vectors. This strategy avoids caveats associated with transient transfection of chemically synthesized miRNA mimics. Overexpression of 2 miRNA clusters, 106a–363 and in particular 302–367, allowed potent increases in induced pluripotent stem cell generation efficiency in mouse fibroblasts using 3 exogenous factors (Sox2, Klf4, and Oct4). Pathway analysis highlighted potential relevant effectors, including mesenchymal-to-epithelial transition, cell cycle, and epigenetic regulators. Further study showed that miRNA cluster 302–367 targeted TGFβ receptor 2, promoted increased E-cadherin expression, and accelerated mesenchymal-to-epithelial changes necessary for colony formation. Our work thus provides an interesting alternative for improving reprogramming using miRNAs and adds new evidence for the emerging relationship between pluripotency and the epithelial phenotype.


Cell Research | 2015

The p53-induced lincRNA-p21 derails somatic cell reprogramming by sustaining H3K9me3 and CpG methylation at pluripotency gene promoters.

Xichen Bao; Haitao Wu; Xihua Zhu; Xiangpeng Guo; Andrew Paul Hutchins; Zhiwei Luo; Hong Song; Yongqiang Chen; Keyu Lai; Menghui Yin; Lingxiao Xu; Liang Zhou; Jiekai Chen; Dongye Wang; Baoming Qin; Jon Frampton; Hung-Fat Tse; Duanqing Pei; Huating Wang; Biliang Zhang; Miguel A. Esteban

Recent studies have boosted our understanding of long noncoding RNAs (lncRNAs) in numerous biological processes, but few have examined their roles in somatic cell reprogramming. Through expression profiling and functional screening, we have identified that the large intergenic noncoding RNA p21 (lincRNA-p21) impairs reprogramming. Notably, lincRNA-p21 is induced by p53 but does not promote apoptosis or cell senescence in reprogramming. Instead, lincRNA-p21 associates with the H3K9 methyltransferase SETDB1 and the maintenance DNA methyltransferase DNMT1, which is facilitated by the RNA-binding protein HNRNPK. Consequently, lincRNA-p21 prevents reprogramming by sustaining H3K9me3 and/or CpG methylation at pluripotency gene promoters. Our results provide insight into the role of lncRNAs in reprogramming and establish a novel link between p53 and heterochromatin regulation.


Current Opinion in Genetics & Development | 2012

The mesenchymal-to-epithelial transition in somatic cell reprogramming.

Miguel A. Esteban; Xichen Bao; Qiang Zhuang; Ting Zhou; Baoming Qin; Duanqing Pei

The epithelial-to-mesenchymal transition (EMT) is a process that confers migratory characteristics to epithelial cells. It is a major force driving embryonic development, tissue fibrosis and malignant progression, and can also create cells with properties of stem cells. The mesenchymal-to-epithelial transition (MET) has the opposite course and frequently coexists with the EMT, but the underlying mechanisms are less well studied. The recent discovery that the MET is required for transforming somatic cells into pluripotent stem cells suggests that the intersection between EMT and MET is a fundamental crossroad for cell fate decisions. Further understanding of the molecular events controlling both situations has relevant implications for regenerative medicine and disease.


Cell Research | 2005

Identification of EGFR kinase domain mutations among lung cancer patients in China: implication for targeted cancer therapy.

Baoming Qin; Xiao Chen; Jing De Zhu; Duanqing Pei

ABSTRACTLung cancer is one of the leading causes of death with one of the lowest survival rates. However, a subset of lung cancer patients who are of Asian origin and carry somatic mutations in epidermal growth factor receptor or EGFR have responded remarkable well to two tyrosine kinase inhibitors, gefitinib and erlotinib. While EGFR mutation profiles have been reported from Japan, South Korea, and Taiwan, there is no such report from mainland of China where the largest pool of patients reside. In this report, we identified ten somatic mutations from a total of 41 lung cancer patients in China. Among them, seven mutations were found in 17 adenocarcinomas. In contrast to previous reports, eight of these mutations are deletions in exon 19 and two of these deletions are homozygous. These results suggest that a large portion of Chinese adenocarcinoma patients could benefit from gefitinib or erlotinib. This unique mutation profile provides a rationale to develop the next generation of EGFR inhibitors more suitable for the Chinese population.


Journal of Biological Chemistry | 2006

Sorting nexin 10 induces giant vacuoles in mammalian cells

Baoming Qin; Miao He; Xiao Chen; Duanqing Pei

Eukaryotic cells maintain a sophisticated network of intracellular membranous system to ensure the proper distribution and compartmentalization of cellular proteins critical for diverse functions such as cell division or cell-cell communication. Yet, little is known about the mechanism that regulates the homeostasis of this system. While analyzing the impact of sorting nexins on the trafficking of membrane type matrix metalloproteinases, we unexpectedly discovered that the expression of SNX10 induced the formation of giant vacuoles in mammalian cells. This vacuolizing activity is sensitive to mutations at the putative phosphoinositide 3-phosphate binding residue Arg53. Domain-swap experiments with SNX3 demonstrate that the PX domain of SNX10 alone is insufficient to generate vacuoles and the downstream C-terminal domain is required for vacuolization. Brefeldin A, a chemical known to block the endoplasmic reticulum to Golgi transport, inhibited the vacuolization process. Together, these results suggest that SNX10 activity may be involved in the regulation of endosome homeostasis.


Current Opinion in Cell Biology | 2013

MicroRNAs in somatic cell reprogramming

Xichen Bao; Xihua Zhu; Baojian Liao; Christina Benda; Qiang Zhuang; Duanqing Pei; Baoming Qin; Miguel A. Esteban

The generation of induced pluripotent stem (iPS) cells by exogenous transcription factors involves a comprehensive rearrangement of cellular functions, including the microRNA profile. The resulting cell lines are similar to embryonic stem (ES) cells and have therefore raised much interest for in vitro studies and the perspective of clinical application. Yet, microRNAs are not mere listeners of the reprogramming orchestra but play an active role in the process. In consequence, overexpression or suppression of individual microRNAs has profound effects in colony formation efficiency, and in combination they can produce iPS cells without added transcription factors. Moreover, variations in microRNA expression of iPS/ES cells can predict their differentiation potential and may have consequences at other levels. Altogether, these findings highlight the relevance of pursuing further these studies.


Nature Cell Biology | 2015

Autophagy and mTORC1 regulate the stochastic phase of somatic cell reprogramming

Yasong Wu; Yuan Li; Hui Zhang; Yinghua Huang; Ping Zhao; Yujia Tang; Xiaohui Qiu; Yue Ying; Wen Li; Su Ni; Meng Zhang; Longqi Liu; Yan Xu; Qiang Zhuang; Zhiwei Luo; Christina Benda; Hong Song; Baohua Liu; Liangxue Lai; Xingguo Liu; Hung-Fat Tse; Xichen Bao; Wai-Yee Chan; Miguel A. Esteban; Baoming Qin; Duanqing Pei

We describe robust induction of autophagy during the reprogramming of mouse fibroblasts to induced pluripotent stem cells by four reprogramming factors (Sox2, Oct4, Klf4 and c-Myc), henceforth 4F. This process occurs independently of p53 activation, and is mediated by the synergistic downregulation of mechanistic target of rapamycin complex 1 (mTORC1) and the induction of autophagy-related genes. The 4F coordinately repress mTORC1, but bifurcate in their regulation of autophagy-related genes, with Klf4 and c-Myc inducing them but Sox2 and Oct4 inhibiting them. On one hand, inhibition of mTORC1 facilitates reprogramming by promoting cell reshaping (mitochondrial remodelling and cell size reduction). On the other hand, mTORC1 paradoxically impairs reprogramming by triggering autophagy. Autophagy does not participate in cell reshaping in reprogramming but instead degrades p62, whose accumulation in autophagy-deficient cells facilitates reprogramming. Our results thus reveal a complex signalling network involving mTORC1 inhibition and autophagy induction in the early phase of reprogramming, whose delicate balance ultimately determines reprogramming efficiency.

Collaboration


Dive into the Baoming Qin's collaboration.

Top Co-Authors

Avatar

Duanqing Pei

Guangzhou Institutes of Biomedicine and Health

View shared research outputs
Top Co-Authors

Avatar

Miguel A. Esteban

Guangzhou Institutes of Biomedicine and Health

View shared research outputs
Top Co-Authors

Avatar

Xichen Bao

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Jiayin Yang

Guangzhou Institutes of Biomedicine and Health

View shared research outputs
Top Co-Authors

Avatar

Qiang Zhuang

Guangzhou Institutes of Biomedicine and Health

View shared research outputs
Top Co-Authors

Avatar

Zhiwei Luo

Guangzhou Institutes of Biomedicine and Health

View shared research outputs
Top Co-Authors

Avatar

Yan Xu

Guangzhou Institutes of Biomedicine and Health

View shared research outputs
Top Co-Authors

Avatar

Hung-Fat Tse

University of Hong Kong

View shared research outputs
Top Co-Authors

Avatar

Christina Benda

Guangzhou Institutes of Biomedicine and Health

View shared research outputs
Top Co-Authors

Avatar

Xiangpeng Guo

Guangzhou Institutes of Biomedicine and Health

View shared research outputs
Researchain Logo
Decentralizing Knowledge