Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Barbara Delle Chiaie is active.

Publication


Featured researches published by Barbara Delle Chiaie.


European Journal of Medical Genetics | 2009

Fourteen new cases contribute to the characterization of the 7q11.23 microduplication syndrome.

Nathalie Van der Aa; Liesbeth Rooms; Geert Vandeweyer; Jenneke van den Ende; Edwin Reyniers; Marco Fichera; Corrado Romano; Barbara Delle Chiaie; Geert Mortier; Björn Menten; A Destree; Isabelle Maystadt; Katrin Männik; Ants Kurg; Tiia Reimand; Dom McMullan; Christine Oley; Louise Brueton; Ernie M.H.F. Bongers; Bregje W.M. van Bon; Rolph Pfund; Sébastien Jacquemont; Alessandra Ferrarini; Danielle Martinet; Connie Schrander-Stumpel; Alexander P.A. Stegmann; Suzanna G M Frints; Bert B.A. de Vries; Berten Ceulemans; R. Frank Kooy

Interstitial deletions of 7q11.23 cause Williams-Beuren syndrome, one of the best characterized microdeletion syndromes. The clinical phenotype associated with the reciprocal duplication however is not well defined, though speech delay is often mentioned. We present 14 new 7q11.23 patients with the reciprocal duplication of the Williams-Beuren syndrome critical region, nine familial and five de novo. These were identified by either array-based MLPA or by array-CGH/oligonucleotide analysis in a series of patients with idiopathic mental retardation with an estimated population frequency of 1:13,000-1:20,000. Variable speech delay is a constant finding in our patient group, confirming previous reports. Cognitive abilities range from normal to moderate mental retardation. The association with autism is present in five patients and in one father who also carries the duplication. There is an increased incidence of hypotonia and congenital anomalies: heart defects (PDA), diaphragmatic hernia, cryptorchidism and non-specific brain abnormalities on MRI. Specific dysmorphic features were noted in our patients, including a short philtrum, thin lips and straight eyebrows. Our patient collection demonstrates that the 7q11.23 microduplication not only causes language delay, but is also associated with congenital anomalies and a recognizable face.


American Journal of Human Genetics | 2012

Mutations in PIGO, a member of the GPI-anchor-synthesis pathway, cause hyperphosphatasia with mental retardation

Peter Krawitz; Yoshiko Murakami; Jochen Hecht; Ulrike Krüger; Susan E. Holder; Geert Mortier; Barbara Delle Chiaie; Elfride De Baere; Miles D. Thompson; Tony Roscioli; Szymon M. Kielbasa; Taroh Kinoshita; Stefan Mundlos; Peter N. Robinson; Denise Horn

Hyperphosphatasia with mental retardation syndrome (HPMRS), an autosomal-recessive form of intellectual disability characterized by facial dysmorphism, seizures, brachytelephalangy, and persistent elevated serum alkaline phosphatase (hyperphosphatasia), was recently shown to be caused by mutations in PIGV, a member of the glycosylphosphatidylinositol (GPI)-anchor-synthesis pathway. However, not all individuals with HPMRS harbor mutations in this gene. By exome sequencing, we detected compound-heterozygous mutations in PIGO, a gene coding for a membrane protein of the same molecular pathway, in two siblings with HPMRS, and we then found by Sanger sequencing further mutations in another affected individual; these mutations cosegregated in the investigated families. The mutant transcripts are aberrantly spliced, decrease the membrane stability of the protein, or impair enzyme function such that GPI-anchor synthesis is affected and the level of GPI-anchored substrates localized at the cell surface is reduced. Our data identify PIGO as the second gene associated with HPMRS and suggest that a deficiency in GPI-anchor synthesis is the underlying molecular pathomechanism of HPMRS.


European Journal of Medical Genetics | 2009

Challenges for CNV interpretation in clinical molecular karyotyping: Lessons learned from a 1001 sample experience

Karen Buysse; Barbara Delle Chiaie; Rudy Van Coster; Bart Loeys; Anne De Paepe; Geert Mortier; Franki Speleman; Björn Menten

Molecular karyotyping has moved from bench to bedside for the genetic screening of patients with mental retardation and/or congenital anomalies. The commercial availability of high-resolution microarray platforms has significantly facilitated this process. However, the notion that copy number variants are also abundantly present in the general population challenges the interpretation of the clinical significance of detected copy number variants (CNVs) in these patients. Moreover, the awareness of incomplete penetrance and variable expression, exemplified by the inheritance of causal CNVs from apparently unaffected parents, has further blurred the boundary between benign and pathogenic variation. We analyzed 1001 patients using a large insert clone array (298 patients) and an oligonucleotide-based (703 patients) platform. In this cohort we encountered several examples of causal imbalances that could have been easily interpreted as benign variants when relying on established paradigms. Based on our experience and the pitfalls we encountered, we suggest a decision tree that can be used as a guideline in clinical diagnostics. Using this workflow, we detected 106 clinically significant CNVs in 100 patients, giving a diagnostic yield of at least 10%. Of these imbalances, 58 occurred de novo, 22 were inherited and 26 of unknown inheritance. This underscores that inherited CNVs should not be automatically disregarded as benign variants. Among the clinically relevant CNVs were 11 single-gene aberrations, highlighting the power of high-resolution molecular karyotyping to identify causal genes.


BMC Medical Genetics | 2009

Array comparative genomic hybridization and flow cytometry analysis of spontaneous abortions and mors in utero samples

Björn Menten; Katrien Swerts; Barbara Delle Chiaie; Sandra Janssens; Karen Buysse; Jan Philippé; Franki Speleman

BackgroundIt is estimated that 10-15% of all clinically recognised pregnancies result in a spontaneous abortion or miscarriage. Previous studies have indicated that in up to 50% of first trimester miscarriages, chromosomal abnormalities can be identified. For several decades chromosome analysis has been the golden standard to detect these genomic imbalances. A major drawback of this method is the requirement of short term cultures of fetal cells. In this study we evaluated the combined use of array CGH and flow cytometry (FCM), for detection of chromosomal abnormalities, as an alternative for karyotyping.MethodsIn total 100 spontaneous abortions and mors in utero samples were investigated by karyotyping and array CGH in combination with FCM in order to compare the results for both methods.ResultsChromosome analysis revealed 17 abnormal karyotypes whereas array CGH in combination with FCM identified 26 aberrations due to the increased test success rate. Karyotyping was unsuccessful in 28% of cases as compared to only two out of hundred samples with inconclusive results for combined array CGH and FCM analysis.ConclusionThis study convincingly shows that array CGH analysis for detection of numerical and segmental imbalances in combination with flow cytometry for detection of ploidy status has a significant higher detection rate for chromosomal abnormalities as compared to karyotyping of miscarriages samples.


Genetics in Medicine | 2014

A prospective study of the clinical utility of prenatal chromosomal microarray analysis in fetuses with ultrasound abnormalities and an exploration of a framework for reporting unclassified variants and risk factors

Paul Brady; Barbara Delle Chiaie; Gabrielle Christenhusz; Kris Dierickx; Kris Van Den Bogaert; Björn Menten; Sandra Janssens; Paul Defoort; Ellen Roets; E Sleurs; Kathelijn Keymolen; Luc De Catte; Jan Deprest; Thomy de Ravel; Hilde Van Esch; Jean Pierre Fryns; Koenraad Devriendt; Joris Vermeesch

Purpose:To evaluate the clinical utility of chromosomal microarrays for prenatal diagnosis by a prospective study of fetuses with abnormalities detected on ultrasound.Methods:Patients referred for prenatal diagnosis due to ultrasound anomalies underwent analysis by array comparative genomic hybridization as the first-tier diagnostic test.Results:A total of 383 prenatal samples underwent analysis by array comparative genomic hybridization. Array analysis revealed causal imbalances in a total of 9.6% of patients (n = 37). Submicroscopic copy-number variations were detected in 2.6% of patients (n = 10/37), and arrays added valuable information over conventional karyotyping in 3.9% of patients (n = 15/37). We highlight a novel advantage of arrays; a 500-kb paternal insertional translocation is the likely driver of a de novo unbalanced translocation, thus improving recurrence risk calculation in this family. Variants of uncertain significance were revealed in 1.6% of patients (n = 6/383).Conclusion:We demonstrate the added value of chromosomal microarrays for prenatal diagnosis in the presence of ultrasound anomalies. We advocate reporting back only copy-number variations with known pathogenic significance. Although this approach might be considered opposite to the ideal of full reproductive autonomy of the parents, we argue why providing all information to parents may result in a false sense of autonomy.Genet Med 16 6, 469–476.


European Journal of Human Genetics | 2012

17q24.2 microdeletions: a new syndromal entity with intellectual disability, truncal obesity, mood swings and hallucinations

Sarah Vergult; Andrew Dauber; Barbara Delle Chiaie; Marleen Simon; Ali Rihani; Bart Loeys; Joel N. Hirschhorn; Jean Pfotenhauer; John A. Phillips; Shehla Mohammed; Caroline Mackie Ogilvie; John A. Crolla; Geert Mortier; Bjoern Menten

Although microdeletions of the long arm of chromosome 17 are being reported with increasing frequency, deletions of chromosome band 17q24.2 are rare. Here we report four patients with a microdeletion encompassing chromosome band 17q24.2 with a smallest region of overlap of 713 kb containing five Refseq genes and one miRNA. The patients share the phenotypic characteristics, such as intellectual disability (4/4), speech delay (4/4), truncal obesity (4/4), seizures (2/4), hearing loss (3/4) and a particular facial gestalt. Hallucinations and mood swings were also noted in two patients. The PRKCA gene is a very interesting candidate gene for many of the observed phenotypic features, as this gene plays an important role in many cellular processes. Deletion of this gene might explain the observed truncal obesity and could also account for the hallucinations and mood swings seen in two patients, whereas deletion of a CACNG gene cluster might be responsible for the seizures observed in two patients. In one of the patients, the PRKAR1A gene responsible for Carney Complex and the KCNJ2 gene causal for Andersen syndrome are deleted. This is the first report of a patient with a whole gene deletion of the KCNJ2 gene.


Orphanet Journal of Rare Diseases | 2014

Extensive clinical, hormonal and genetic screening in a large consecutive series of 46,XY neonates and infants with atypical sexual development

Dorien Baetens; Wilhelm Mladenov; Barbara Delle Chiaie; Björn Menten; An Desloovere; Violeta Iotova; Bert Callewaert; Erik Van Laecke; Piet Hoebeke; Elfride De Baere; Martine Cools

BackgroundOne in 4500 children is born with ambiguous genitalia, milder phenotypes occur in one in 300 newborns. Conventional time-consuming hormonal and genetic work-up provides a genetic diagnosis in around 20-40% of 46,XY cases with ambiguous genitalia. All others remain without a definitive diagnosis. The investigation of milder cases, as suggested by recent reports remains controversial.MethodsIntegrated clinical, hormonal and genetic screening was performed in a sequential series of 46, XY children, sex-assigned male, who were referred to our pediatric endocrine service for atypical genitalia (2007–2013).ResultsA consecutive cohort of undervirilized 46,XY children with external masculinization score (EMS) 2–12, was extensively investigated. In four patients, a clinical diagnosis of Kallmann syndrome or Mowat-Wilson syndrome was made and genetically supported in 2/3 and 1/1 cases respectively. Hormonal data were suggestive of a (dihydro)testosterone biosynthesis disorder in four cases, however no HSD17B3 or SRD5A2 mutations were found. Array-CGH revealed a causal structural variation in 2/6 syndromic patients. In addition, three novel NR5A1 mutations were found in non-syndromic patients. Interestingly, one mutation was present in a fertile male, underlining the inter- and intrafamilial phenotypic variability of NR5A1-associated phenotypes. No AR, SRY or WT1 mutations were identified.ConclusionOverall, a genetic diagnosis could be established in 19% of non-syndromic and 33% of syndromic cases. There is no difference in diagnostic yield between patients with more or less pronounced phenotypes, as expressed by the external masculinisation score (EMS). The clinical utility of array-CGH is high in syndromic cases. Finally, a sequential gene-by-gene approach is time-consuming, expensive and inefficient. Given the low yield and high expense of Sanger sequencing, we anticipate that massively parallel sequencing of gene panels and whole exome sequencing hold promise for genetic diagnosis of 46,XY DSD boys with an undervirilized phenotype.


American Journal of Medical Genetics Part A | 2010

Genotype-phenotype correlation in eight new patients with a deletion encompassing 2q31.1.

Diana Mitter; Barbara Delle Chiaie; Hermann-Josef Lüdecke; Gabriele Gillessen-Kaesbach; Axel Bohring; Jürgen Kohlhase; Almuth Caliebe; Reiner Siebert; Albrecht Roepke; Maria Ramos-Arroyo; Beatriz Nieva; Björn Menten; Bart Loeys; Geert Mortier; Dagmar Wieczorek

Microdeletions of the 2q31.1 region are rare. We present the clinical and molecular findings of eight previously unreported patients with overlapping deletions in 2q31.1. The patients have a variable clinical phenotype and present with developmental delay (7/8), growth retardation (5/8), seizures (2/8) and a craniofacial dysmorphism consisting of microcephaly (4/8), short palpebral fissures (7/8), broad eyebrows with lateral flare (7/8), low‐set ears with thickened helices and lobules (5/8), and micrognathia (6/8). Additional congenital anomalies were noted, including limb abnormalities (8/8), heart defects (3/8), genital anomalies (3/8), and craniosynostosis (1/8). Six of these microdeletions, ranging in size from 1.24 to 8.35 Mb, were identified by array CGH, one larger deletion (19.7 Mb) was detected by conventional karyotyping and further characterized by array CGH analysis. The smallest region of overlap in all eight patients spans at most 88 kb and includes only the WIPF1 gene. This gene codes for the WAS/WASL interacting protein family member 1. The patients described here do not present with clinical signs of the Wiskott–Aldrich syndrome and the deletion of this single gene does not allow explaining the phenotype in our patients. It is likely that the deletion of different but overlapping sets of genes from 2q31 is responsible for the clinical variability in these patients. To further dissect the complex phenotype associated with deletions in 2q31, additional patients with overlapping phenotypes should be examined with array CGH. This should help to link particular phenotypes to specific genes, and add to our understanding of the underlying developmental processes.


European Journal of Human Genetics | 2015

Redefining the MED13L syndrome

Abidemi Adegbola; Luciana Musante; Bert Callewaert; Patrícia Maciel; Hao Hu; Bertrand Isidor; Cédric Le Caignec; Barbara Delle Chiaie; Olivier Vanakker; Björn Menten; Annelies Dheedene; Nele Bockaert; Filip Roelens; Karin Decaestecker; João Silva; Gabriela Soares; Fátima Lopes; Hossein Najmabadi; Kimia Kahrizi; Gerald F. Cox; Steven P. Angus; John F. Staropoli; Ute Fischer; Vanessa Suckow; Oliver Bartsch; Andrew Chess; Hans-Hilger Ropers; Thomas F. Wienker; Christoph Hübner; Angela M. Kaindl

Congenital cardiac and neurodevelopmental deficits have been recently linked to the mediator complex subunit 13-like protein MED13L, a subunit of the CDK8-associated mediator complex that functions in transcriptional regulation through DNA-binding transcription factors and RNA polymerase II. Heterozygous MED13L variants cause transposition of the great arteries and intellectual disability (ID). Here, we report eight patients with predominantly novel MED13L variants who lack such complex congenital heart malformations. Rather, they depict a syndromic form of ID characterized by facial dysmorphism, ID, speech impairment, motor developmental delay with muscular hypotonia and behavioral difficulties. We thereby define a novel syndrome and significantly broaden the clinical spectrum associated with MED13L variants. A prominent feature of the MED13L neurocognitive presentation is profound language impairment, often in combination with articulatory deficits.


ESPE 2014 | 2014

46,XY Neonates and Infants with Ambiguous Genitalia: Who to Investigate?

Dorien Baetens; Wilhelm Mladenov; Barbara Delle Chiaie; An Desloovere; Violeta Iotova; Björn Menten; Laecke Eric Van; Piet Hoebeke; Baere Elfride De; Martine Cools

Collaboration


Dive into the Barbara Delle Chiaie's collaboration.

Top Co-Authors

Avatar

Björn Menten

Ghent University Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bert Callewaert

Ghent University Hospital

View shared research outputs
Top Co-Authors

Avatar

Sandra Janssens

Ghent University Hospital

View shared research outputs
Top Co-Authors

Avatar

Anne De Paepe

Ghent University Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Karen Buysse

Ghent University Hospital

View shared research outputs
Top Co-Authors

Avatar

Martine Cools

Ghent University Hospital

View shared research outputs
Top Co-Authors

Avatar

Piet Hoebeke

Ghent University Hospital

View shared research outputs
Researchain Logo
Decentralizing Knowledge