Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Barbara Marinelli is active.

Publication


Featured researches published by Barbara Marinelli.


Cancer Research | 2007

Changes in DNA Methylation Patterns in Subjects Exposed to Low-Dose Benzene

Valentina Bollati; Andrea Baccarelli; Lifang Hou; Matteo Bonzini; Silvia Fustinoni; Domenico Cavallo; Hyang-Min Byun; Jiayi Jiang; Barbara Marinelli; Angela Cecilia Pesatori; Pier Alberto Bertazzi; Allen S. Yang

Aberrant DNA methylation patterns, including global hypomethylation, gene-specific hypermethylation/hypomethylation, and loss of imprinting (LOI), are common in acute myelogenous leukemia (AML) and other cancer tissues. We investigated for the first time whether such epigenetic changes are induced in healthy subjects by low-level exposure to benzene, a widespread pollutant associated with AML risk. Blood DNA samples and exposure data were obtained from subjects with different levels of benzene exposure, including 78 gas station attendants, 77 traffic police officers, and 58 unexposed referents in Milan, Italy (personal airborne benzene range, < 6-478 microg/m(3)). Bisulfite-PCR pyrosequencing was used to quantitate DNA methylation in long interspersed nuclear element-1 (LINE-1) and AluI repetitive elements as a surrogate of genome-wide methylation and examine gene-specific methylation of MAGE-1 and p15. Allele-specific pyrosequencing of the H19 gene was used to detect LOI in 96 subjects heterozygous for the H19 imprinting center G/A single-nucleotide polymorphism. Airborne benzene was associated with a significant reduction in LINE-1 (-2.33% for a 10-fold increase in airborne benzene levels; P = 0.009) and AluI (-1.00%; P = 0.027) methylation. Hypermethylation in p15 (+0.35%; P = 0.018) and hypomethylation in MAGE-1 (-0.49%; P = 0.049) were associated with increasing airborne benzene levels. LOI was found only in exposed subjects (4 of 73, 5.5%) and not in referents (0 of 23, 0.0%). However, LOI was not significantly associated with airborne benzene (P > 0.20). This is the first human study to link altered DNA methylation, reproducing the aberrant epigenetic patterns found in malignant cells, to low-level carcinogen exposure.


Environmental Health Perspectives | 2009

Effects of Particulate Matter on Genomic DNA Methylation Content and iNOS Promoter Methylation

Letizia Tarantini; Matteo Bonzini; Pietro Apostoli; Valeria Pegoraro; Valentina Bollati; Barbara Marinelli; Laura Cantone; Giovanna Rizzo; Lifang Hou; Joel Schwartz; Pier Alberto Bertazzi; Andrea Baccarelli

Background Altered patterns of gene expression mediate the effects of particulate matter (PM) on human health, but mechanisms through which PM modifies gene expression are largely undetermined. Objectives We aimed at identifying short- and long-term effects of PM exposure on DNA methylation, a major genomic mechanism of gene expression control, in workers in an electric furnace steel plant with well-characterized exposure to PM with aerodynamic diameters < 10 μm (PM10). Methods We measured global genomic DNA methylation content estimated in Alu and long interspersed nuclear element-1 (LINE-1) repeated elements, and promoter DNA methylation of iNOS (inducible nitric oxide synthase), a gene suppressed by DNA methylation and induced by PM exposure in blood leukocytes. Quantitative DNA methylation analysis was performed through bisulfite PCR pyrosequencing on blood DNA obtained from 63 workers on the first day of a work week (baseline, after 2 days off work) and after 3 days of work (postexposure). Individual PM10 exposure was between 73.4 and 1,220 μg/m3. Results Global methylation content estimated in Alu and LINE-1 repeated elements did not show changes in postexposure measures compared with baseline. PM10 exposure levels were negatively associated with methylation in both Alu [β = −0.19 %5-methylcytosine (%5mC); p = 0.04] and LINE-1 [β = −0.34 %5mC; p = 0.04], likely reflecting long-term PM10 effects. iNOS promoter DNA methylation was significantly lower in postexposure blood samples compared with baseline (difference = −0.61 %5mC; p = 0.02). Conclusions We observed changes in global and gene specific methylation that should be further characterized in future investigations on the effects of PM.


International Journal of Epidemiology | 2012

Predictors of global methylation levels in blood DNA of healthy subjects: a combined analysis

Zhong Zheng Zhu; Lifang Hou; Valentina Bollati; Letizia Tarantini; Barbara Marinelli; Laura Cantone; Allen S. Yang; Pantel S. Vokonas; Jolanta Lissowska; Silvia Fustinoni; Angela Cecilia Pesatori; Matteo Bonzini; Pietro Apostoli; Giovanni Costa; Pier Alberto Bertazzi; Wong Ho Chow; Joel Schwartz; Andrea Baccarelli

BACKGROUND Estimates of global DNA methylation from repetitive DNA elements, such as Alu and LINE-1, have been increasingly used in epidemiological investigations because of their relative low-cost, high-throughput and quantitative results. Nevertheless, determinants of these methylation measures in healthy individuals are still largely unknown. The aim of this study was to examine whether age, gender, smoking habits, alcohol drinking and body mass index (BMI) are associated with Alu or LINE-1 methylation levels in blood leucocyte DNA of healthy individuals. METHODS Individual data from five studies including a total of 1465 healthy subjects were combined. DNA methylation was quantified by PCR-pyrosequencing. RESULTS Age [β = -0.011% of 5-methyl-cytosine (%5 mC)/year, 95% confidence interval (CI) -0.020 to -0.001%5 mC/year] and alcohol drinking (β = -0.214, 95% CI -0.415 to -0.013) were inversely associated with Alu methylation. Compared with females, males had lower Alu methylation (β = -0.385, 95% CI -0.665 to -0.104) and higher LINE-1 methylation (β = 0.796, 95% CI 0.261 to 1.330). No associations were found with smoking or BMI. Percent neutrophils and lymphocytes in blood counts exhibited a positive (β = 0.036, 95% CI 0.010 to 0.061) and negative (β = -0.038, 95% CI -0.065 to -0.012) association with LINE-1 methylation, respectively. CONCLUSIONS Global methylation measures in blood DNA vary in relation with certain host and lifestyle characteristics, including age, gender, alcohol drinking and white blood cell counts. These findings need to be considered in designing epidemiological investigations aimed at identifying associations between DNA methylation and health outcomes.


Environmental Health Perspectives | 2010

Exposure to Metal-Rich Particulate Matter Modifies the Expression of Candidate MicroRNAs in Peripheral Blood Leukocytes

Valentina Bollati; Barbara Marinelli; Pietro Apostoli; Matteo Bonzini; Francesco Nordio; Mirjam Hoxha; Valeria Pegoraro; Valeria Motta; Letizia Tarantini; Laura Cantone; Joel Schwartz; Pier Alberto Bertazzi; Andrea Baccarelli

Background Altered patterns of gene expression mediate the effects of particulate matter (PM) on human health, but mechanisms through which PM modifies gene expression are largely undetermined. MicroRNAs (miRNAs) are highly conserved, noncoding small RNAs that regulate the expression of broad gene networks at the posttranscriptional level. Objectives We evaluated the effects of exposure to PM and PM metal components on candidate miRNAs (miR-222, miR-21, and miR-146a) related with oxidative stress and inflammatory processes in 63 workers at an electric-furnace steel plant. Methods We measured miR-222, miR-21, and miR-146a expression in blood leukocyte RNA on the first day of a workweek (baseline) and after 3 days of work (postexposure). Relative expression of miRNAs was measured by real-time polymerase chain reaction. We measured blood oxidative stress (8-hydroxyguanine) and estimated individual exposures to PM1 (< 1 μm in aerodynamic diameter), PM10 (< 10 μm in aerodynamic diameter), coarse PM (PM10 minus PM1), and PM metal components (chromium, lead, cadmium, arsenic, nickel, manganese) between the baseline and postexposure measurements. Results Expression of miR-222 and miR-21 (using the 2−ΔΔCT method) was significantly increased in postexposure samples (miR-222: baseline = 0.68 ± 3.41, postexposure = 2.16 ± 2.25, p = 0.002; miR-21: baseline = 4.10 ± 3.04, postexposure = 4.66 ± 2.63, p = 0.05). In postexposure samples, miR-222 expression was positively correlated with lead exposure (β = 0.41, p = 0.02), whereas miR-21 expression was associated with blood 8-hydroxyguanine (β = 0.11, p = 0.03) but not with individual PM size fractions or metal components. Postexposure expression of miR-146a was not significantly different from baseline (baseline = 0.61 ± 2.42, postexposure = 1.90 ± 3.94, p = 0.19) but was negatively correlated with exposure to lead (β = −0.51, p = 0.011) and cadmium (β = −0.42, p = 0.04). Conclusions Changes in miRNA expression may represent a novel mechanism mediating responses to PM and its metal components.


Environmental Health | 2009

Association between leukocyte telomere shortening and exposure to traffic pollution: a cross-sectional study on traffic officers and indoor office workers

Mirjam Hoxha; Laura Dioni; Matteo Bonzini; Angela Cecilia Pesatori; Silvia Fustinoni; Domenico Cavallo; Michele Carugno; Benedetta Albetti; Barbara Marinelli; Joel Schwartz; Pier Alberto Bertazzi; Andrea Baccarelli

BackgroundTelomere shortening in blood leukocytes has been associated with increased morbidity and death from cardiovascular disease and cancer, but determinants of shortened telomeres, a molecular feature of biological aging, are still largely unidentified. Traffic pollution has been linked with both cardiovascular and cancer risks, particularly in older subjects. Whether exposure to traffic pollution is associated with telomere shortening has never been evaluated.MethodsWe measured leukocyte telomere length (LTL) by real-time PCR in blood DNA from 77 traffic officers exposed to high levels of traffic pollutants and 57 office workers (referents). Airborne benzene and toluene, as tracers for traffic exposure, were measured using personal passive samplers and gas-chromatography/flame-ionization detector analysis. We used covariate-adjusted multivariable models to test the effects of the exposure on LTL and obtain adjusted LTL means and 95% Confidence Intervals (CIs).ResultsAdjusted mean LTL was 1.10 (95%CI 1.04-1.16) in traffic officers and 1.27 in referents (95%CI 1.20-1.35) [p < 0.001]. LTL decreased in association with age in both traffic officers (p = 0.01) and referents (p = 0.001), but traffic officers had shorter LTL within each age category. Among traffic officers, adjusted mean relative LTL was shorter in individuals working in high (n = 45, LTL = 1.02, 95%CI 0.96-1.09) compared to low traffic intensity (n = 32, LTL = 1.22, 95%CI 1.13-1.31) [p < 0.001]. In the entire study population, LTL decreased with increasing levels of personal exposure to benzene (p = 0.004) and toluene (p = 0.008).ConclusionOur results indicate that leukocyte telomere length is shortened in subjects exposed to traffic pollution, suggesting evidence of early biological aging and disease risk.


BMC Public Health | 2008

Environment And Genetics in Lung cancer Etiology (EAGLE) study: an integrative population-based case-control study of lung cancer.

Maria Teresa Landi; Dario Consonni; Melissa Rotunno; Andrew W. Bergen; Alisa M. Goldstein; Jay H. Lubin; Lynn R. Goldin; Michael C. R. Alavanja; Glen Morgan; Amy F. Subar; Ilona Linnoila; Fabrizio Previdi; Massimo Corno; Maurizia Rubagotti; Barbara Marinelli; Benedetta Albetti; Antonio Colombi; Margaret A. Tucker; Sholom Wacholder; Angela Cecilia Pesatori; Neil E. Caporaso; Pier Alberto Bertazzi

BackgroundLung cancer is the leading cause of cancer mortality worldwide. Tobacco smoking is its primary cause, and yet the precise molecular alterations induced by smoking in lung tissue that lead to lung cancer and impact survival have remained obscure. A new framework of research is needed to address the challenges offered by this complex disease.Methods/DesignWe designed a large population-based case-control study that combines a traditional molecular epidemiology design with a more integrative approach to investigate the dynamic process that begins with smoking initiation, proceeds through dependency/smoking persistence, continues with lung cancer development and ends with progression to disseminated disease or response to therapy and survival. The study allows the integration of data from multiple sources in the same subjects (risk factors, germline variation, genomic alterations in tumors, and clinical endpoints) to tackle the disease etiology from different angles. Before beginning the study, we conducted a phone survey and pilot investigations to identify the best approach to ensure an acceptable participation in the study from cases and controls. Between 2002 and 2005, we enrolled 2101 incident primary lung cancer cases and 2120 population controls, with 86.6% and 72.4% participation rate, respectively, from a catchment area including 216 municipalities in the Lombardy region of Italy. Lung cancer cases were enrolled in 13 hospitals and population controls were randomly sampled from the area to match the cases by age, gender and residence. Detailed epidemiological information and biospecimens were collected from each participant, and clinical data and tissue specimens from the cases. Collection of follow-up data on treatment and survival is ongoing.DiscussionEAGLE is a new population-based case-control study that explores the full spectrum of lung cancer etiology, from smoking addiction to lung cancer outcome, through examination of epidemiological, molecular, and clinical data. We have provided a detailed description of the study design, field activities, management, and opportunities for research following this integrative approach, which allows a sharper and more comprehensive vision of the complex nature of this disease. The study is poised to accelerate the emergence of new preventive and therapeutic strategies with potentially enormous impact on public health.


Environmental Health | 2010

Airborne particulate matter and mitochondrial damage: a cross-sectional study

Lifang Hou; Zhong Zheng Zhu; Xiao Zhang; Francesco Nordio; Matteo Bonzini; Joel Schwartz; Mirjam Hoxha; Laura Dioni; Barbara Marinelli; Valeria Pegoraro; Pietro Apostoli; Pier Alberto Bertazzi; Andrea Baccarelli

BackgroundOxidative stress generation is a primary mechanism mediating the effects of Particulate Matter (PM) on human health. Although mitochondria are both the major intracellular source and target of oxidative stress, the effect of PM on mitochondria has never been evaluated in exposed individuals.MethodsIn 63 male healthy steel workers from Brescia, Italy, studied between April and May 2006, we evaluated whether exposure to PM was associated with increased mitochondrial DNA copy number (MtDNAcn), an established marker of mitochondria damage and malfunctioning. Relative MtDNAcn (RMtDNAcn) was determined by real-time PCR in blood DNA obtained on the 1st (time 1) and 4th day (time 2) of the same work week. Individual exposures to PM10, PM1, coarse particles (PM10-PM1) and airborne metal components of PM10 (chromium, lead, arsenic, nickel, manganese) were estimated based on measurements in the 11 work areas and time spent by the study subjects in each area.ResultsRMtDNAcn was higher on the 4th day (mean = 1.31; 95%CI = 1.22 to 1.40) than on the 1st day of the work week (mean = 1.09; 95%CI = 1.00 to 1.17). PM exposure was positively associated with RMtDNAcn on either the 4th (PM10: β = 0.06, 95%CI = -0.06 to 0.17; PM1: β = 0.08, 95%CI = -0.08 to 0.23; coarse: β = 0.06, 95%CI = -0.06 to 0.17) or the 1st day (PM10: β = 0.18, 95%CI = 0.09 to 0.26; PM1: β = 0.23, 95%CI = 0.11 to 0.35; coarse: β = 0.17, 95%CI = 0.09 to 0.26). Metal concentrations were not associated with RMtDNAcn.ConclusionsPM exposure is associated with damaged mitochondria, as reflected in increased MtDNAcn. Damaged mitochondria may intensify oxidative-stress production and effects.


Environment International | 2012

AIR POLLUTION EXPOSURE AND TELOMERE LENGTH IN HIGHLY EXPOSED SUBJECTS IN BEIJING, CHINA: A REPEATED-MEASURE STUDY

Lifang Hou; Sheng Wang; Chang Dou; Xiao Zhang; Yue Yu; Yinan Zheng; Umakanth Avula; Mirjam Hoxha; Anaite Diaz; John McCracken; Francesco Barretta; Barbara Marinelli; Pier Alberto Bertazzi; Joel Schwartz; Andrea Baccarelli

BACKGROUND Ambient particulate matter (PM) exposure has been associated with short- and long-term effects on cardiovascular disease (CVD). Telomere length (TL) is a biomarker of CVD risk that is modified by inflammation and oxidative stress, two key pathways for PM effects. Whether PM exposure modifies TL is largely unexplored. OBJECTIVES To investigate effects of PM on blood TL in a highly-exposed population. METHODS We measured blood TL in 120 blood samples from truck drivers and 120 blood samples from office workers in Beijing, China. We measured personal PM(2.5) and Elemental Carbon (EC, a tracer of traffic particles) using light-weight monitors. Ambient PM(10) was obtained from local monitoring stations. We used covariate-adjusted regression models to estimate percent changes in TL per an interquartile-range increase in exposure. RESULTS Covariate-adjusted TL was higher in drivers (mean=0.87, 95%CI: 0.74; 1.03) than in office workers (mean=0.79, 95%CI: 0.67; 0.93; p=0.001). In all participants combined, TL increased in association with personal PM(2.5) (+5.2%, 95%CI: 1.5; 9.1; p=0.007), personal EC (+4.9%, 95%CI: 1.2; 8.8; p=0.01), and ambient PM(10) (+7.7%, 95%CI: 3.7; 11.9; p<0.001) on examination days. In contrast, average ambient PM(10) over the 14 days before the examinations was significantly associated with shorter TL (-9.9%, 95%CI: -17.6; -1.5; p=0.02). CONCLUSIONS Short-term exposure to ambient PM is associated with increased blood TL, consistent with TL roles during acute inflammatory responses. Longer exposures may shorten TL as expected after prolonged pro-oxidant exposures. The observed TL alterations may participate in the biological pathways of short- and long-term PM effects.


British Journal of Cancer | 2004

XPD gene polymorphism and host characteristics in the association with cutaneous malignant melanoma risk

Andrea Baccarelli; Donato Calista; P Minghetti; Barbara Marinelli; Benedetta Albetti; T Tseng; Mohammad Hedayati; Lawrence Grossman; Giorgio Landi; J P Struewing; Maria Teresa Landi

We recently reported an association between low DNA repair capacity, measured through the host-cell reactivation assay, and melanoma risk in subjects with dysplastic naevi or low tanning ability. We investigated the genetic basis for these findings by analysing the Asp312Asn and Lys751Gln polymorphisms of the XPD (ERCC2) DNA repair gene in the same subjects. Similar to our previous report, no significant association between XPD polymorphisms and melanoma risk was found in 176 melanoma cases and 177 controls (odds ratio (OR)=1.5, 95% confidence interval (CI)=0.9–2.5 for 312Asn; OR=1.3, 95% CI=0.8–2.1 for 751Gln, adjusted for age, gender, dysplastic naevi and pigmentation characteristics). However, XPD variants were associated with increased risk in older (>50 years) subjects (OR=3.4, 95% CI=1.6–7.3 for 312Asn; OR=2.3, 95% CI=1.1–4.9 for 751Gln). The 751Gln allele was associated with elevated melanoma risk among subjects without dysplastic naevi (OR=2.6, 95% CI=1.1–6.4). Subjects with low tanning ability and XPD variants exhibited a nonsignificant increase of melanoma risk (OR=2.3, 95% CI=0.7–7.0 for 312Asn; OR=3.0, 95% CI=1.0–8.8 for 751Gln). DNA repair capacity was slightly decreased in subjects carrying 751Gln alleles. XPD variants may modify melanoma risk in subjects with specific host characteristics, such as older age, lack of dysplastic naevi or low tanning ability.


Journal of Thrombosis and Haemostasis | 2010

Effects of inhalable particulate matter on blood coagulation.

Matteo Bonzini; Armando Tripodi; Andrea Artoni; Letizia Tarantini; Barbara Marinelli; Pier Alberto Bertazzi; Pietro Apostoli; Andrea Baccarelli

See also Mannucci PM. Fine particulate: it matters. This issue, pp 659–61; Dales RE, Cakmak S, Vidal CB. Air pollution and hospitalization for venous thromboembolic disease in Chile. This issue, pp 669–74.

Collaboration


Dive into the Barbara Marinelli's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lifang Hou

Northwestern University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge