Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Baris Bayram is active.

Publication


Featured researches published by Baris Bayram.


IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control | 2003

Calculation and measurement of electromechanical coupling coefficient of capacitive micromachined ultrasonic transducers

Goksen G. Yaralioglu; A.S. Ergun; Baris Bayram; Edward Hæggström; Butrus T. Khuri-Yakub

The electromechanical coupling coefficient is an important figure of merit of ultrasonic transducers. The transducer bandwidth is determined by the electromechanical coupling efficiency. The coupling coefficient is, by definition, the ratio of delivered mechanical energy to the stored total energy in the transducer. In this paper, we present the calculation and measurement of coupling coefficient for capacitive micromachined ultrasonic transducers (CMUTs). The finite element method (FEM) is used for our calculations, and the FEM results are compared with the analytical results obtained with parallel plate approximation. The effect of series and parallel capacitances in the CMUT also is investigated. The FEM calculations of the CMUT indicate that the electromechanical coupling coefficient is independent of any series capacitance that may exist in the structure. The series capacitance, however, alters the collapse voltage of the membrane. The parallel parasitic capacitance that may exist in a CMUT or is external to the transducer reduces the coupling coefficient at a given bias voltage. At the collapse, regardless of the parasitics, the coupling coefficient reaches unity. Our experimental measurements confirm a coupling coefficient of 0.85 before collapse, and measurements are in agreement with theory.


IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control | 2003

A new regime for operating capacitive micromachined ultrasonic transducers

Baris Bayram; Edward Hæggström; Goksen G. Yaralioglu; Butrus T. Khuri-Yakub

We report on a new operation regime for capacitive micromachined ultrasonic transducers (cMUTs). Traditionally, cMUTs are operated at a bias voltage lower than the collapse voltage of their membranes. In the new proposed operation regime, first the cMUT is biased past the collapse voltage. Second, the bias voltage applied to the collapsed membrane is reduced without releasing the membrane. Third, the cMUT is excited with an ac signal at the bias point, keeping the total applied voltage between the collapse and snapback voltages. In this operation regime, the center of the membrane is always in contact with the substrate. Our finite element methods (FEM) calculations reveal that a cMUT operating in this new regime, between collapse and snapback voltages, possesses a coupling efficiency (k/sub T//sup 2/) higher than a cMUT operating in the conventional regime below its collapse voltage. This paper compares the simulation results of the coupling efficiencies of cMUTs operating in conventional and new operation regimes.


IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control | 2005

Capacitive micromachined ultrasonic transducer design for high power transmission

Baris Bayram; Omer Oralkan; A.S. Ergun; Edward Hæggström; Goksen G. Yaralioglu; Butrus T. Khuri-Yakub

Capacitive micromachined ultrasonic transducers (cMUTs) were developed to meet the demands of the ultrasonic industry. To achieve maximum efficiency, the conventional operation of the cMUT requires a bias voltage close to the collapse voltage. Total acoustic output pressure is limited by the efficiency of the cMUT and the maximum-allowed pulse voltage on the membrane. In this paper, we propose the collapse-snapback operation of the cMUT: the membrane is collapsed onto the substrate in the collapsing cycle, and released in the snapback cycle. The collapse-snapback operation overcomes the above-mentioned limitations of the conventional operation. The collapse-snapback operation utilizes a larger range of membrane deflection profiles (both collapsed and released profiles) and generates higher acoustic output pressures. The static finite element calculations were performed to design cMUTs with specific collapse and snapback voltages by changing the electrode parameters (radius (r/sub e/), position (d/sub e/), and thickness (t/sub e/)). These designs were refined for optimum average displacement per cycle. An electrode radius greater than 60% of the membrane radius significantly improved the displacement per volt. Moderately thick membranes (t/sub e//spl sim/0.2 /spl mu/m) were preferred, as thicker membranes reduced the displacement per volt. Under proper bias conditions, the collapse-snapback operation, designed for high-power transmission, allowed the application of pulse voltages larger than the difference of collapse and snapback voltages. Dynamic finite element calculations of an infinite cMUT array on the substrate loaded with acoustic fluid medium were performed to determine the dynamic response of the cMUT. Commercially available FEM packages ANSYS and LSDYNA were used for static and dynamic calculations, respectively. The cMUTs were fabricated for optimal performance in the collapse-snapback operation. The transmit experiments were performed on a 2-D cMUT array using a calibrated hydrophone. Taking into account the attenuation and diffraction losses, the pressure on the cMUT surface was extracted. The cMUT generated 0.47 MPa (6 kPa/V) and 1.04 MPa (11 kPa/V) in the conventional and collapse-snapback operations, respectively. Therefore, collapse-snapback operation of the cMUTs was superior for high-power transmission.


IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control | 2007

Finite element modeling and experimental characterization of crosstalk in 1-D CMUT arrays

Baris Bayram; Mario Kupnik; Goksen G. Yaralioglu; Omer Oralkan; A.S. Ergun; Serena H. Wong; Butrus T. Khuri-Yakub

Crosstalk is the coupling of energy between the elements of an ultrasonic transducer array. This coupling degrades the performance of transducers in applications such as medical imaging and therapeutics. In this paper, we present an experimental demonstration of guided interface waves in capacitive micromachined ultrasonic transducers (CMUTs). We compare the experimental results to finite element calculations using a commercial package (LS-DYNA) for a 1-D CMUT array operating in the conventional and collapsed modes. An element in the middle of the array was excited with a unipolar voltage pulse, and the displacements were measured using a laser interferometer along the center line of the array elements immersed in soybean oil. We repeated the measurements for an identical CMUT array covered with a 4.5-mum polydimethyl-siloxane (PDMS) layer. The main crosstalk mechanism is the dispersive guided modes propagating in the fluid-solid interface. Although the transmitter element had a center frequency of 5.8 MHz with a 130% fractional bandwidth in the conventional operation, the dispersive guided mode was observed with the maximum amplitude at a frequency of 2.1 MHz, and had a cut-off frequency of 4 MHz. In the collapsed operation, the dispersive guided mode was observed with the maximum amplitude at a frequency of 4.0 MHz, and had a cut-off frequency of 10 MHz. Crosstalk level was lower in the collapsed operation (-39 dB) than in the conventional operation (-24.4 dB). The coverage of the PDMS did not significantly affect the crosstalk level, but reduced the phase velocity for both operation modes. Lamb wave modes, A0 and S0, were also observed with crosstalk levels of -40 dB and -65 dB, respectively. We observed excellent agreement between the finite element and the experimental results


IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control | 2006

Experimental characterization of collapse-mode CMUT operation

Omer Oralkan; Baris Bayram; Goksen G. Yaralioglu; A.S. Ergun; Mario Kupnik; David T. Yeh; Ira O. Wygant; Butrus T. Khuri-Yakub

This paper reports on the experimental characterization of collapse-mode operation of capacitive micromachined ultrasonic transducers (CMUTs). CMUTs are conventionally operated by applying a direct current (DC) bias voltage less than the collapse voltage of the membrane, so that the membrane is deflected toward the bottom electrode. In the conventional regime, there is no contact between the membrane and the substrate; the maximum alternating current (AC) displacement occurs at the center of the membrane. In collapse-mode operation, the DC bias voltage is first increased beyond the collapse voltage, then reduced without releasing the collapsed membrane. In collapse-mode operation, the center of the membrane is always in contact with the substrate. In the case of a circular membrane, the maximum AC displacement occurs along the ring formed between the center and the edge of the membrane. The experimental characterization presented in this paper includes impedance measurements in air, pulse-echo experiments in immersion, and one-way optical displacement measurements in immersion for both conventional and collapse-mode operations. A 205-mum times 205-mum 2-D CMUT array element composed of circular silicon nitride membranes is used in the experiments. In pulse-echo experiments, a custom integrated circuit (IC) comprising a pulse driver, a transmit/receive switch, a wideband low-noise preamplifier, and a line driver is used. By reducing the parasitic capacitance, the use of a custom IC enables pulse-echo measurements at high frequencies with a very small transducer. By comparing frequency response and efficiency of the transducer in conventional and collapse regimes, experimental results show that a collapsed membrane can be used to generate and detect ultrasound more efficiently than a membrane operated in the conventional mode. Furthermore, the center frequency of the collapsed membrane can be changed by varying the applied DC voltage. In this study, the center frequency of a collapsed transducer in immersion is shown to vary from 20 MHz to 28 MHz with applied DC bias; the same transducer operates at 10 MHz in the conventional mode. In conventional mode, the maximum peak-to-peak pressure is 370 kPa on the transducer surface for a 40-ns, 25-V unipolar pulse excitation. In collapse mode, a 25-ns, 25-V unipolar pulse generates 590 kPa pressure at the surface of the transducer


internaltional ultrasonics symposium | 2004

Analytical calculation of collapse voltage of CMUT membrane [capacitive micromachined ultrasonic transducers]

Amin Nikoozadeh; Baris Bayram; Goksen G. Yaralioglu; Butrus T. Khuri-Yakub

Because the collapse voltage determines the operating point of the capacitive micromachined ultrasonic transducer (CMUT), it is crucial to calculate and control this parameter. In this paper, we propose a fast numerical algorithm for the calculation of collapse voltage. The algorithm uses the parallel plate method to approximate the force distribution over the membrane, and then applies an analytical solution for the plate equation, loaded by the approximated force distribution. Using this method, we are able to calculate the collapse voltage in a couple of seconds, within 0.1% accuracy. We report on the collapse voltage calculation results using our method for four different design structures. While the computation time of our method is about three orders of magnitude less than the finite element method, the percentage error of collapse voltage calculation is, nevertheless, less than four percent in all the design structures. The proposed algorithm is also suitable for the inclusion of any external force distribution on the membrane, such as atmospheric pressure.


internaltional ultrasonics symposium | 2004

High-frequency CMUT arrays for high-resolution medical imaging

Omer Oralkan; S.T. Hansen; Baris Bayram; Goksen G. Yaralioglu; A.S. Ergun; Butrus T. Khuri-Yakub

The paper describes high-frequency 1D CMUT arrays designed and fabricated for use in electronically scanned high-resolution ultrasonic imaging systems. Two different designs of 64-element linear CMUT arrays are presented. A single element in each array is connected to a single-channel custom front-end integrated circuit for pulse-echo operation. The first design has a resonant frequency of 43 MHz in air, and operates at 30 MHz in immersion. The second design exhibits a resonant frequency of 60 MHz in air, and operates at 45 MHz in immersion. Experimental results are compared to simulation results obtained from the equivalent circuit model and nonlinear dynamic finite element analysis; a good agreement is observed between these results. The paper also briefly discusses the effects of the area fill factor on the frequency characteristics of CMUTs, which reveals that the transducer active area should be maximized to obtain a wideband response at high frequencies.


IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control | 2006

Comparison of conventional and collapsed region operation of capacitive micromachined ultrasonic transducers

Yongli Huang; Edward Hæggström; Baris Bayram; Xuefeng Zhuang; A.S. Ergun; Ching-Hsiang Cheng; Butrus T. Khuri-Yakub

We report experimental results from a comparative study on collapsed region and conventional region operation of capacitive micromachined ultrasonic transducers (CMUTs) fabricated with a wafer bonding technique. Using ultrasonic pulse-echo and pitch-catch measurements, we characterized single elements of 1-D CMUT arrays operating in oil. The experimental results from this study agreed with the simulation results: a CMUT operating in the collapsed region produced a higher maximum output pressure than a CMUT operated in the conventional region at 90% of its collapse voltage (3 kPa/V vs. 16.1 kPa/V at 2.3 MHz). While the pulse-echo fractional bandwidth (126%) was higher in the collapsed region operation than in the conventional operation (117%), the pulse-echo amplitude in collapsed region operation was 11 dB higher than in conventional region operation. Furthermore, within the range of tested bias voltages, the output pressure monotonously increased with increased bias during collapsed region operation. It was also found that in the conventional mode, short AC pulses (larger than the collapse voltage) could be applied without collapsing the membranes. Finally, while no significant difference was observed in reflectivity of the CMUT face between the two regions of operation, hysteretic behavior of the devices was identified in the collapsed region operation


IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control | 2005

Dynamic analysis of capacitive micromachined ultrasonic transducers

Baris Bayram; Goksen G. Yaralioglu; Mario Kupnik; A.S. Ergun; Omer Oralkan; Amin Nikoozadeh; Butrus T. Khuri-Yakub

Electrostatic transducers are usually operated under a DC bias below their collapse voltage. The same scheme has been adopted for capacitive micromachined ultrasonic transducers (cMUTs). DC bias deflects the cMUT membranes toward the substrate, so that their centers are free to move during both receive and transmit operations. In this paper, we present time-domain, finite element calculations for cMUTs using LS-DYNA, a commercially available finite element package. In addition to this DC bias mode, other new cMUT operations (collapse and collapse-snapback) have recently been demonstrated. Because cMUT membranes make contact with the substrate in these new operations, modeling of these cMUTs should include contact analysis. Our model was a cMUT transducer consisting of many hexagonal membranes; because it was symmetrical, we modeled only one-sixth of a hexagonal cell loaded with a fluid medium. The finite element results for both conventional and collapse modes were compared to measurements made by an optical interferometer; a good match was observed. Thus, the model is useful for designing cMUTs that operate in regimes where membranes make contact with the substrate.


internaltional ultrasonics symposium | 2001

Residual stress and Young's modulus measurement of capacitive micromachined ultrasonic transducer membranes

Goksen G. Yaralioglu; A.S. Ergun; Baris Bayram; Theodore C. Marentis; Butrus T. Khuri-Yakub

Membranes supported by posts are used as vibrating elements of capacitive micromachined ultrasonic transducers (CMUTs). The residual stress built up during the fabrication process determines the transducer properties such as resonance frequency, collapse voltage, and gap distance. Hence, it is important to evaluate and control the stress in thin film CMUT membranes. The residual stress in the membrane causes significant vertical displacements at the center of the membrane. The stress bends the membrane posts, and the slope at the membrane edges result in amplified displacement at the center by the radius of the membrane. By measuring the center displacement, it is possible to determine the stress provided that Youngs modulus of the thin film is known accurately. Usually, in thin film structures Youngs modulus differs from that of bulk materials and it depends on thin film deposition technique. In this paper, we propose a novel technique for the measurement of stress and Youngs modulus of CMUT membranes. The technique depends on the measurement of membrane deflection and resonance frequency. We modeled the stress and Youngs modulus dependence of membrane deflection and resonance frequency using finite element analysis. We used an atomic force microscope (AFM) to measure the membrane deflection and a laser interferometer to determine the resonance frequency of the membrane. The technique is tested on a CMUT membrane. We found that our LPCVD deposition technique yields residual stress of around 100 MPa and Youngs modulus of around 300 GPa.

Collaboration


Dive into the Baris Bayram's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Omer Oralkan

North Carolina State University

View shared research outputs
Top Co-Authors

Avatar

Mario Kupnik

Technische Universität Darmstadt

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge