Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Barry D. Nelkin is active.

Publication


Featured researches published by Barry D. Nelkin.


Nature Medicine | 1995

p53 activates expression of HIC-1, a new candidate tumour suppressor gene on 17p13.3

Michele Makos Wales; Margaret A. Biel; Wafik El Deiry; Barry D. Nelkin; Jean-Pierre Issa; Webster K. Cavenee; Steven J. Kuerbitz; Stephen B. Baylin

For several human tumour types, allelic toss data suggest that one or more tumour suppressor genes reside telomeric to the p53 gene at chromosome 17p13.1. In the present study we have used a new strategy, involving molecular analysis of a DNA site hypermethylated in tumour DNA, to identify a candidate gene in this region (17p13.3). Our approach has led to identification of HIC-1 (hypermethylated in cancer), a new zinc-finger transcription factor gene which is ubiquitously expressed in normal tissues, but underexpressed in different tumour cells where it is hypermethylated. Multiple characteristics of this gene, including the presence of a p53 binding site in the 5′ flanking region, activation of the gene by expression of a wild-type p53 gene and suppression of C418 selectability of cultured brain, breast and colon cancer cells following insertion of the gene, make HIC-1 gene a strong candidate for a tumour suppressor gene in region 17p13.3.


Cell | 1982

The ovalbumin gene is associated with the nuclear matrix of chicken oviduct cells

Sabina Robinson; Barry D. Nelkin; Bert Vogelstein

The DNA in a eucaryotic nucleus is arranged into a series of supercoiled loops that are anchored at their bases to the nuclear matrix. Using nuclease digestion, one can progressively cleave DNA from the loops, thereby isolating residual DNA that is progressively closer to the nuclear matrix anchorage sites. We have determined that the ovalbumin gene is preferentially associated with the nuclear matrix of chicken oviduct cells, but is not preferentially associated with the nuclear matrix of chicken liver cells. As a control, the beta-globin gene, which is not transcribed in oviduct cells, was found not to be preferentially associated with the oviduct nuclear matrix. The observation that the transcriptionally active ovalbumin gene is preferentially associated with the nuclear matrix may have significant implications for gene expression and the organization of nuclear DNA into supercoiled-loop domains.


Molecular and Cellular Biology | 2002

Notch Signaling Induces Rapid Degradation of Achaete-Scute Homolog 1

Virote Sriuranpong; Michael Borges; Christopher L. Strock; Eric K. Nakakura; D. Neil Watkins; Christine M. Blaumueller; Barry D. Nelkin; Douglas W. Ball

ABSTRACT In neural development, Notch signaling plays a key role in restricting neuronal differentiation, promoting the maintenance of progenitor cells. Classically, Notch signaling causes transactivation of Hairy-enhancer of Split (HES) genes which leads to transcriptional repression of neural determination and differentiation genes. We now report that in addition to its known transcriptional mechanism, Notch signaling also leads to rapid degradation of the basic helix-loop-helix (bHLH) transcription factor human achaete-scute homolog 1 (hASH1). Using recombinant adenoviruses expressing active Notch1 in small-cell lung cancer cells, we showed that the initial appearance of Notch1 coincided with the loss of hASH1 protein, preceding the full decay of hASH1 mRNA. Overexpression of HES1 alone was capable of down-regulating hASH1 mRNA but could not replicate the acute reduction of hASH1 protein induced by Notch1. When adenoviral hASH1 was coinfected with Notch1, we still observed a dramatic and abrupt loss of the exogenous hASH1 protein, despite high levels of ongoing hASH1 RNA expression. Notch1 treatment decreased the apparent half-life of the adenoviral hASH1 protein and increased the fraction of hASH1 which was polyubiquitinylated. The proteasome inhibitor MG132 reversed the Notch1-induced degradation. The Notch RAM domain was dispensable but a lack of the OPA and PEST domains inactivated this Notch1 action. Overexpression of the hASH1-dimerizing partner E12 could protect hASH1 from degradation. This novel function of activated Notch to rapidly degrade a class II bHLH protein may prove to be important in many contexts in development and in cancer.


Journal of Clinical Investigation | 1998

Activated Raf-1 causes growth arrest in human small cell lung cancer cells.

Rajani Ravi; Erich Weber; Martin McMahon; Jerry R. Williams; Stephen B. Baylin; Asoke Mal; Marian L. Harter; Larry E. Dillehay; Pier Paolo Claudio; Antonio Giordano; Barry D. Nelkin; Mack Mabry

Small cell lung cancer (SCLC) accounts for 25% of all lung cancers, and is almost uniformly fatal. Unlike other lung cancers, ras mutations have not been reported in SCLC, suggesting that activation of ras-associated signal transduction pathways such as the raf-MEK mitogen-activated protein kinases (MAPK) are associated with biological consequences that are unique from other cancers. The biological effects of raf activation in small cell lung cancer cells was determined by transfecting NCI-H209 or NCI-H510 SCLC cells with a gene encoding a fusion protein consisting of an oncogenic form of human Raf-1 and the hormone binding domain of the estrogen receptor (DeltaRaf-1:ER), which can be activated with estradiol. DeltaRaf-1:ER activation resulted in phosphorylation of MAPK. Activation of this pathway caused a dramatic loss of soft agar cloning ability, suppression of growth capacity, associated with cell accumulation in G1 and G2, and S phase depletion. Raf activation in these SCLC cells was accompanied by a marked induction of the cyclin-dependent kinase (cdk) inhibitor p27(kip1), and a decrease in cdk2 protein kinase activities. Each of these events can be inhibited by pretreatment with the MEK inhibitor PD098059. These data demonstrate that MAPK activation by DeltaRaf-1:ER can activate growth inhibitory pathways leading to cell cycle arrest. These data suggest that raf/MEK/ MAPK pathway activation, rather than inhibition, may be a therapeutic target in SCLC and other neuroendocrine tumors.


The Journal of Clinical Endocrinology and Metabolism | 2013

Exomic Sequencing of Medullary Thyroid Cancer Reveals Dominant and Mutually Exclusive Oncogenic Mutations in RET and RAS

Nishant Agrawal; Yuchen Jiao; Mark Sausen; Rebecca J. Leary; Chetan Bettegowda; Nicholas J. Roberts; Sheetal Bhan; Allen S. Ho; Zubair Khan; Justin A. Bishop; William H. Westra; Laura D. Wood; Ralph H. Hruban; Ralph P. Tufano; Bruce G. Robinson; Henning Dralle; Sergio P. A. Toledo; Rodrigo A. Toledo; Luc G. T. Morris; Ronald Ghossein; James A. Fagin; Timothy A. Chan; Victor E. Velculescu; Bert Vogelstein; Kenneth W. Kinzler; Nickolas Papadopoulos; Barry D. Nelkin; Douglas W. Ball

CONTEXT Medullary thyroid cancer (MTC) is a rare thyroid cancer that can occur sporadically or as part of a hereditary syndrome. OBJECTIVE To explore the genetic origin of MTC, we sequenced the protein coding exons of approximately 21,000 genes in 17 sporadic MTCs. PATIENTS AND DESIGN We sequenced the exomes of 17 sporadic MTCs and validated the frequency of all recurrently mutated genes and other genes of interest in an independent cohort of 40 MTCs comprised of both sporadic and hereditary MTC. RESULTS We discovered 305 high-confidence mutations in the 17 sporadic MTCs in the discovery phase, or approximately 17.9 somatic mutations per tumor. Mutations in RET, HRAS, and KRAS genes were identified as the principal driver mutations in MTC. All of the other additional somatic mutations, including mutations in spliceosome and DNA repair pathways, were not recurrent in additional tumors. Tumors without RET, HRAS, or KRAS mutations appeared to have significantly fewer mutations overall in protein coding exons. CONCLUSIONS Approximately 90% of MTCs had mutually exclusive mutations in RET, HRAS, and KRAS, suggesting that RET and RAS are the predominant driver pathways in MTC. Relatively few mutations overall and no commonly recurrent driver mutations other than RET, HRAS, and KRAS were seen in the MTC exome.


Molecular and Cellular Biology | 1996

RREB-1, a novel zinc finger protein, is involved in the differentiation response to Ras in human medullary thyroid carcinomas

A Thiagalingam; A. De Bustros; Michael Borges; R Jasti; D Compton; L Diamond; Mack Mabry; Douglas W. Ball; Stephen B. Baylin; Barry D. Nelkin

An activated ras oncogene induces a program of differentiation in the human medullary thyroid cancer cell line TT. This differentiation process is accompanied by a marked increase in the transcription of the human calcitonin (CT) gene. We have localized a unique Ras-responsive transcriptional element (RRE) in the CT gene promoter. DNase I protection indicates two domains of protein-DNA interaction, and each domain separately can confer Ras-mediated transcriptional inducibility. This bipartite RRE was also found to be Raf responsive. By affinity screening, we have cloned a cDNA coding for a zinc finger transcription factor (RREB-1) that binds to the distal RRE. The consensus binding site for this factor is CCCCAAACCACCCC. RREB-1 is expressed ubiquitously in human tissues outside the adult brain. Overexpression of RREB-1 protein in TT cells confers the ability to mediate increased transactivation of the CT gene promoter-reporter construct during Ras- or Raf-induced differentiation. These data suggest that RREB-1 may play a role in Ras and Raf signal transduction in medullary thyroid cancer and other cells.


Cancer Research | 2006

Cyclin-Dependent Kinase 5 Activity Controls Cell Motility and Metastatic Potential of Prostate Cancer Cells

Christopher J. Strock; Jong-In Park; Eric K. Nakakura; G. Steven Bova; John T. Isaacs; Douglas W. Ball; Barry D. Nelkin

We show here that cyclin-dependent kinase 5 (CDK5), a known regulator of migration in neuronal development, plays an important role in prostate cancer motility and metastasis. P35, an activator of CDK5 that is indicative of its activity, is expressed in a panel of human and rat prostate cancer cell lines, and is also expressed in 87.5% of the human metastatic prostate cancers we examined. Blocking of CDK5 activity with a dominant-negative CDK5 construct, small interfering RNA, or roscovitine resulted in changes in the microtubule cytoskeleton, loss of cellular polarity, and loss of motility. Expression of a dominant-negative CDK5 in the highly metastatic Dunning AT6.3 prostate cancer cell line also greatly impaired invasive capacity. CDK5 activity was important for spontaneous metastasis in vivo; xenografts of AT6.3 cells expressing dominant-negative CDK5 had less than one-fourth the number of lung metastases exhibited by AT6.3 cells expressing the empty vector. These results show that CDK5 activity controls cell motility and metastatic potential in prostate cancer.


Molecular and Cellular Biology | 2003

The Ras/Raf/MEK/Extracellular Signal-Regulated Kinase Pathway Induces Autocrine-Paracrine Growth Inhibition via the Leukemia Inhibitory Factor/JAK/STAT Pathway

Jong-In Park; Christopher J. Strock; Douglas W. Ball; Barry D. Nelkin

ABSTRACT Sustained activation of the Ras/Raf/MEK/extracellular signal-regulated kinase (ERK) pathway can lead to cell cycle arrest in many cell types. We have found, with human medullary thyroid cancer (MTC) cells, that activated Ras or c-Raf-1 can induce growth arrest by producing and secreting an autocrine-paracrine factor. This protein was purified from cell culture medium conditioned by Raf-activated MTC cells and was identified by mass spectrometry as leukemia inhibitory factor (LIF). LIF expression upon Raf activation and subsequent activation of JAK-STAT3 was also observed in small cell lung carcinoma cells, suggesting that this autocrine-paracrine signaling may be a common response to Ras/Raf activation. LIF was sufficient to induce growth arrest and differentiation of MTC cells. This effect was mediated through the gp130/JAK/STAT3 pathway, since anti-gp130 blocking antibody or dominant-negative STAT3 blocked the effects of LIF. Thus, LIF expression provides a novel mechanism allowing Ras/Raf signaling to activate the JAK-STAT3 pathway. In addition to this cell-extrinsic growth inhibitory pathway, we find that the Ras/Raf/MEK/ERK pathway induces an intracellular growth inhibitory signal, independent of the LIF/JAK/STAT3 pathway. Therefore, activation of the Ras/Raf/MEK/ERK pathway can lead to growth arrest and differentiation via at least two different signaling pathways. This use of multiple pathways may be important for “fail-safe” induction and maintenance of cell cycle arrest.


Cancer Research | 2009

Achaete-Scute Complex Homologue 1 Regulates Tumor-Initiating Capacity in Human Small Cell Lung Cancer

Tianyun Jiang; Brendan J Collins; Ning Jin; David N. Watkins; Malcolm V. Brock; William Matsui; Barry D. Nelkin; Douglas W. Ball

The basic helix-loop-helix transcription factor achaete-scute complex homologue 1 (ASCL1) is essential for the development of normal lung neuroendocrine cells as well as other endocrine and neural tissues. Small cell lung cancer (SCLC) and non-SCLC with neuroendocrine features express ASCL1, where the factor may play a role in the virulence and primitive neuroendocrine phenotype of these tumors. In this study, RNA interference knockdown of ASCL1 in cultured SCLC resulted in inhibition of soft agar clonogenic capacity and induction of apoptosis. cDNA microarray analyses bolstered by expression studies, flow cytometry, and chromatin immunoprecipitation identified two candidate stem cell marker genes, CD133 and aldehyde dehydrogenase 1A1 (ALDH1A1), to be directly regulated by ASCL1 in SCLC. In SCLC direct xenograft tumors, we detected a relatively abundant CD133(high)-ASCL1(high)-ALDH1(high) subpopulation with markedly enhanced tumorigenicity compared with cells with weak CD133 expression. Tumorigenicity in the CD133(high) subpopulation depended on continued ASCL1 expression. Whereas CD133(high) cells readily reconstituted the range of CD133 expression seen in the original xenograft tumor, CD133(low) cells could not. Our findings suggest that a broad range of SCLC cells has tumorigenic capacity rather than a small discrete population. Intrinsic tumor cell heterogeneity, including variation in key regulatory factors such as ASCL1, can modulate tumorigenicity in SCLC.


Cancer Research | 2010

Inhibiting the Cyclin-Dependent Kinase CDK5 Blocks Pancreatic Cancer Formation and Progression through the Suppression of Ras-Ral Signaling

Georg Feldmann; Anjali Mishra; Seung-Mo Hong; Savita Bisht; Christopher J. Strock; Douglas W. Ball; Michael Goggins; Anirban Maitra; Barry D. Nelkin

Cyclin-dependent kinase 5 (CDK5), a neuronal kinase that functions in migration, has been found to be activated in some human cancers in which it has been implicated in promoting metastasis. In this study, we investigated the role of CDK5 in pancreatic cancers in which metastatic disease is most common at diagnosis. CDK5 was widely active in pancreatic cancer cells. Functional ablation significantly inhibited invasion, migration, and anchorage-independent growth in vitro, and orthotopic tumor formation and systemic metastases in vivo. CDK5 blockade resulted in the profound inhibition of Ras signaling through its critical effectors RalA and RalB. Conversely, restoring Ral function rescued the effects of CDK5 inhibition in pancreatic cancer cells. Our findings identify CDK5 as a pharmacologically tractable target to degrade Ras signaling in pancreatic cancer.

Collaboration


Dive into the Barry D. Nelkin's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mack Mabry

Johns Hopkins University

View shared research outputs
Top Co-Authors

Avatar

Michael Borges

Johns Hopkins University

View shared research outputs
Top Co-Authors

Avatar

Bert Vogelstein

University of Texas System

View shared research outputs
Top Co-Authors

Avatar

A. De Bustros

Johns Hopkins University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jong-In Park

Medical College of Wisconsin

View shared research outputs
Top Co-Authors

Avatar

Rajani Ravi

Johns Hopkins University School of Medicine

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge