Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Christopher J. Wilson is active.

Publication


Featured researches published by Christopher J. Wilson.


Nature | 2012

The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity.

Jordi Barretina; Giordano Caponigro; Nicolas Stransky; Kavitha Venkatesan; Adam A. Margolin; Sungjoon Kim; Christopher J. Wilson; Joseph Lehar; Gregory V. Kryukov; Dmitriy Sonkin; Anupama Reddy; Manway Liu; Lauren Murray; Michael F. Berger; John E. Monahan; Paula Morais; Jodi Meltzer; Adam Korejwa; Judit Jané-Valbuena; Felipa A. Mapa; Joseph Thibault; Eva Bric-Furlong; Pichai Raman; Aaron Shipway; Ingo H. Engels; Jill Cheng; Guoying K. Yu; Jianjun Yu; Peter Aspesi; Melanie de Silva

The systematic translation of cancer genomic data into knowledge of tumour biology and therapeutic possibilities remains challenging. Such efforts should be greatly aided by robust preclinical model systems that reflect the genomic diversity of human cancers and for which detailed genetic and pharmacological annotation is available. Here we describe the Cancer Cell Line Encyclopedia (CCLE): a compilation of gene expression, chromosomal copy number and massively parallel sequencing data from 947 human cancer cell lines. When coupled with pharmacological profiles for 24 anticancer drugs across 479 of the cell lines, this collection allowed identification of genetic, lineage, and gene-expression-based predictors of drug sensitivity. In addition to known predictors, we found that plasma cell lineage correlated with sensitivity to IGF1 receptor inhibitors; AHR expression was associated with MEK inhibitor efficacy in NRAS-mutant lines; and SLFN11 expression predicted sensitivity to topoisomerase inhibitors. Together, our results indicate that large, annotated cell-line collections may help to enable preclinical stratification schemata for anticancer agents. The generation of genetic predictions of drug response in the preclinical setting and their incorporation into cancer clinical trial design could speed the emergence of ‘personalized’ therapeutic regimens.


Nature | 2009

Tankyrase inhibition stabilizes axin and antagonizes Wnt signalling

Shih Min A Huang; Yuji Mishina; Shanming Liu; Atwood Cheung; Frank Stegmeier; Gregory A. Michaud; Olga Charlat; Yue Zhang; Stephanie Wiessner; Marc Hild; Xiaoying Shi; Christopher J. Wilson; Craig Mickanin; Vic E. Myer; Aleem Fazal; Ronald Tomlinson; Fabrizio C. Serluca; Wenlin Shao; Hong Cheng; Michael Shultz; Christina Rau; Markus Schirle; Judith Schlegl; Sonja Ghidelli; Stephen Fawell; Chris Lu; Daniel Curtis; Marc W. Kirschner; Christoph Lengauer; Peter Finan

The stability of the Wnt pathway transcription factor β-catenin is tightly regulated by the multi-subunit destruction complex. Deregulated Wnt pathway activity has been implicated in many cancers, making this pathway an attractive target for anticancer therapies. However, the development of targeted Wnt pathway inhibitors has been hampered by the limited number of pathway components that are amenable to small molecule inhibition. Here, we used a chemical genetic screen to identify a small molecule, XAV939, which selectively inhibits β-catenin-mediated transcription. XAV939 stimulates β-catenin degradation by stabilizing axin, the concentration-limiting component of the destruction complex. Using a quantitative chemical proteomic approach, we discovered that XAV939 stabilizes axin by inhibiting the poly-ADP-ribosylating enzymes tankyrase 1 and tankyrase 2. Both tankyrase isoforms interact with a highly conserved domain of axin and stimulate its degradation through the ubiquitin-proteasome pathway. Thus, our study provides new mechanistic insights into the regulation of axin protein homeostasis and presents new avenues for targeted Wnt pathway therapies.


Nature | 2010

COT drives resistance to RAF inhibition through MAP kinase pathway reactivation

Cory M. Johannessen; Jesse S. Boehm; So Young Kim; Sapana Thomas; Leslie Wardwell; Laura A. Johnson; Caroline Emery; Nicolas Stransky; Alexandria P. Cogdill; Jordi Barretina; Giordano Caponigro; Haley Hieronymus; Ryan R. Murray; Kourosh Salehi-Ashtiani; David E. Hill; Marc Vidal; Jean Zhao; Xiaoping Yang; Ozan Alkan; Sungjoon Kim; Jennifer L. Harris; Christopher J. Wilson; Vic E. Myer; Peter Finan; David E. Root; Thomas M. Roberts; Todd R. Golub; Keith T. Flaherty; Reinhard Dummer; Barbara Weber

Oncogenic mutations in the serine/threonine kinase B-RAF (also known as BRAF) are found in 50–70% of malignant melanomas. Pre-clinical studies have demonstrated that the B-RAF(V600E) mutation predicts a dependency on the mitogen-activated protein kinase (MAPK) signalling cascade in melanoma—an observation that has been validated by the success of RAF and MEK inhibitors in clinical trials. However, clinical responses to targeted anticancer therapeutics are frequently confounded by de novo or acquired resistance. Identification of resistance mechanisms in a manner that elucidates alternative ‘druggable’ targets may inform effective long-term treatment strategies. Here we expressed ∼600 kinase and kinase-related open reading frames (ORFs) in parallel to interrogate resistance to a selective RAF kinase inhibitor. We identified MAP3K8 (the gene encoding COT/Tpl2) as a MAPK pathway agonist that drives resistance to RAF inhibition in B-RAF(V600E) cell lines. COT activates ERK primarily through MEK-dependent mechanisms that do not require RAF signalling. Moreover, COT expression is associated with de novo resistance in B-RAF(V600E) cultured cell lines and acquired resistance in melanoma cells and tissue obtained from relapsing patients following treatment with MEK or RAF inhibitors. We further identify combinatorial MAPK pathway inhibition or targeting of COT kinase activity as possible therapeutic strategies for reducing MAPK pathway activation in this setting. Together, these results provide new insights into resistance mechanisms involving the MAPK pathway and articulate an integrative approach through which high-throughput functional screens may inform the development of novel therapeutic strategies.


Cell | 2009

Bidirectional Transport of Amino Acids Regulates mTOR and Autophagy

Paul Leslie Nicklin; Philip Bergman; Bailin Zhang; Ellen Triantafellow; Henry Wang; Beat Nyfeler; Haidi Yang; Marc Hild; Charles Kung; Christopher J. Wilson; Vic E. Myer; Jeffrey P. MacKeigan; Jeffrey A. Porter; Y. Karen Wang; Lewis C. Cantley; Peter Finan; Leon O. Murphy

Amino acids are required for activation of the mammalian target of rapamycin (mTOR) kinase which regulates protein translation, cell growth, and autophagy. Cell surface transporters that allow amino acids to enter the cell and signal to mTOR are unknown. We show that cellular uptake of L-glutamine and its subsequent rapid efflux in the presence of essential amino acids (EAA) is the rate-limiting step that activates mTOR. L-glutamine uptake is regulated by SLC1A5 and loss of SLC1A5 function inhibits cell growth and activates autophagy. The molecular basis for L-glutamine sensitivity is due to SLC7A5/SLC3A2, a bidirectional transporter that regulates the simultaneous efflux of L-glutamine out of cells and transport of L-leucine/EAA into cells. Certain tumor cell lines with high basal cellular levels of L-glutamine bypass the need for L-glutamine uptake and are primed for mTOR activation. Thus, L-glutamine flux regulates mTOR, translation and autophagy to coordinate cell growth and proliferation.


Molecular Cell | 1998

Temporal Regulation of RNA Polymerase II by Srb10 and Kin28 Cyclin-Dependent Kinases

Christoph J. Hengartner; Vic E. Myer; Sha-Mei Liao; Christopher J. Wilson; Sang Seok Koh; Richard A. Young

Two cyclin-dependent kinases have been identified in yeast and mammalian RNA polymerase II transcription initiation complexes. We find that the two yeast kinases are indistinguishable in their ability to phosphorylate the RNA polymerase II CTD, and yet in living cells one kinase is a positive regulator and the other a negative regulator. This paradox is resolved by the observation that the negative regulator, Srb10, is uniquely capable of phosphorylating the CTD prior to formation of the initiation complex on promoter DNA, with consequent inhibition of transcription. In contrast, the TFIIH kinase phosphorylates the CTD only after the transcription apparatus is associated with promoter DNA. These results reveal that the timing of CTD phosphorylation can account for the positive and negative functions of the two kinases and provide a model for Srb10-dependent repression of genes involved in cell type specificity, meiosis, and sugar utilization.


Cell | 1996

RNA Polymerase II Holoenzyme Contains SWI/SNF Regulators Involved in Chromatin Remodeling

Christopher J. Wilson; David M. Chao; Anthony N. Imbalzano; Gavin R. Schnitzler; Robert E. Kingston; Richard A. Young

The RNA polymerase II holoenzyme contains RNA polymerase II, a subset of general transcription factors and SRB regulatory proteins. We report here that SWI and SNF gene products, previously identified as global gene regulators whose functions include remodeling chromatin, are also integral components of the yeast RNA polymerase II holoenzyme. The SWI/SNF proteins are components of the SRB complex, also known as the mediator, which is tightly associated with the RNA polymerase II C-terminal repeat domain. The SWI/SNF components provide the holoenzyme with the capacity to disrupt nucleosomal DNA and thus facilitate stable binding of various components of the transcription initiation complex at promoters.


Molecular Cancer Therapeutics | 2012

Identification and Characterization of NVP-BKM120, an Orally Available Pan-Class I PI3-Kinase Inhibitor

Sauveur-Michel Maira; S Pecchi; Alan Huang; M Burger; Mark Knapp; Dario Sterker; Christian Schnell; Daniel Guthy; T Nagel; Marion Wiesmann; Saskia M. Brachmann; Christine Fritsch; Marion Dorsch; Patrick Chène; K Shoemaker; A De Pover; Daniel Menezes; G Martiny-Baron; Doriano Fabbro; Christopher J. Wilson; Robert Schlegel; Francesco Hofmann; Carlos Garcia-Echeverria; William R. Sellers; C.F. Voliva

Following the discovery of NVP-BEZ235, our first dual pan-PI3K/mTOR clinical compound, we sought to identify additional phosphoinositide 3-kinase (PI3K) inhibitors from different chemical classes with a different selectivity profile. The key to achieve these objectives was to couple a structure-based design approach with intensive pharmacologic evaluation of selected compounds during the medicinal chemistry optimization process. Here, we report on the biologic characterization of the 2-morpholino pyrimidine derivative pan-PI3K inhibitor NVP-BKM120. This compound inhibits all four class I PI3K isoforms in biochemical assays with at least 50-fold selectivity against other protein kinases. The compound is also active against the most common somatic PI3Kα mutations but does not significantly inhibit the related class III (Vps34) and class IV (mTOR, DNA-PK) PI3K kinases. Consistent with its mechanism of action, NVP-BKM120 decreases the cellular levels of p-Akt in mechanistic models and relevant tumor cell lines, as well as downstream effectors in a concentration-dependent and pathway-specific manner. Tested in a panel of 353 cell lines, NVP-BKM120 exhibited preferential inhibition of tumor cells bearing PIK3CA mutations, in contrast to either KRAS or PTEN mutant models. NVP-BKM120 shows dose-dependent in vivo pharmacodynamic activity as measured by significant inhibition of p-Akt and tumor growth inhibition in mechanistic xenograft models. NVP-BKM120 behaves synergistically when combined with either targeted agents such as MEK or HER2 inhibitors or with cytotoxic agents such as docetaxel or temozolomide. The pharmacological, biologic, and preclinical safety profile of NVP-BKM120 supports its clinical development and the compound is undergoing phase II clinical trials in patients with cancer. Mol Cancer Ther; 11(2); 317–28. ©2011 AACR.


Cancer Discovery | 2012

FGFR Genetic Alterations Predict for Sensitivity to NVP-BGJ398, a Selective Pan-FGFR Inhibitor

Vito Guagnano; Audrey Kauffmann; Simon Wöhrle; Christelle Stamm; Moriko Ito; Louise Barys; Astrid Pornon; Yao Yao; Fang Li; Yun Zhang; Zhi Chen; Christopher J. Wilson; Vincent Bordas; Mickaël Le Douget; L. Alex Gaither; Jason Borawski; John E. Monahan; Kavitha Venkatesan; Thomas Brümmendorf; David Thomas; Carlos Garcia-Echeverria; Francesco Hofmann; William R. Sellers; Diana Graus-Porta

UNLABELLED Patient stratification biomarkers that enable the translation of cancer genetic knowledge into clinical use are essential for the successful and rapid development of emerging targeted anticancer therapeutics. Here, we describe the identification of patient stratification biomarkers for NVP-BGJ398, a novel and selective fibroblast growth factor receptor (FGFR) inhibitor. By intersecting genome-wide gene expression and genomic alteration data with cell line-sensitivity data across an annotated collection of cancer cell lines called the Cancer Cell Line Encyclopedia, we show that genetic alterations for FGFR family members predict for sensitivity to NVP-BGJ398. For the first time, we report oncogenic FGFR1 amplification in osteosarcoma as a potential patient selection biomarker. Furthermore, we show that cancer cell lines harboring FGF19 copy number gain at the 11q13 amplicon are sensitive to NVP-BGJ398 only when concomitant expression of β-klotho occurs. Thus, our findings provide the rationale for the clinical development of FGFR inhibitors in selected patients with cancer harboring tumors with the identified predictors of sensitivity. SIGNIFICANCE The success of a personalized medicine approach using targeted therapies ultimately depends on being able to identify the patients who will benefit the most from any given drug. To this end, we have integrated the molecular profiles for more than 500 cancer cell lines with sensitivity data for the novel anticancer drug NVP-BGJ398 and showed that FGFR genetic alterations are the most significant predictors for sensitivity. This work has ultimately endorsed the incorporation of specific patient selection biomakers in the clinical trials for NVP-BGJ398.


Nature Cell Biology | 2014

Selective VPS34 inhibitor blocks autophagy and uncovers a role for NCOA4 in ferritin degradation and iron homeostasis in vivo

William E. Dowdle; Beat Nyfeler; Jane Nagel; Robert Elling; Shanming Liu; Ellen Triantafellow; Suchithra Menon; Zuncai Wang; Ayako Honda; Gwynn Pardee; John Cantwell; Catherine Luu; Ivan Cornella-Taracido; Edmund Harrington; Peter Fekkes; Hong Lei; Qing Fang; Mary Ellen Digan; Debra Burdick; Andrew F. Powers; Stephen B. Helliwell; Simon D’Aquin; Julie Bastien; Henry Wang; Dmitri Wiederschain; Jenny Kuerth; Philip Bergman; David Schwalb; Jason R. Thomas; Savuth Ugwonali

Cells rely on autophagy to clear misfolded proteins and damaged organelles to maintain cellular homeostasis. In this study we use the new autophagy inhibitor PIK-III to screen for autophagy substrates. PIK-III is a selective inhibitor of VPS34 that binds a unique hydrophobic pocket not present in related kinases such as PI(3)Kα. PIK-III acutely inhibits autophagy and de novo lipidation of LC3, and leads to the stabilization of autophagy substrates. By performing ubiquitin-affinity proteomics on PIK-III-treated cells we identified substrates including NCOA4, which accumulates in ATG7-deficient cells and co-localizes with autolysosomes. NCOA4 directly binds ferritin heavy chain-1 (FTH1) to target the iron-binding ferritin complex with a relative molecular mass of 450,000 to autolysosomes following starvation or iron depletion. Interestingly, Ncoa4−/− mice exhibit a profound accumulation of iron in splenic macrophages, which are critical for the reutilization of iron from engulfed red blood cells. Taken together, the results of this study provide a new mechanism for selective autophagy of ferritin and reveal a previously unappreciated role for autophagy and NCOA4 in the control of iron homeostasis in vivo.


Molecular Cancer Therapeutics | 2014

Characterization of the novel and specific PI3Kα inhibitor NVP-BYL719 and development of the patient stratification strategy for clinical trials.

Christine Fritsch; Alan Huang; Christian Chatenay-Rivauday; Christian Schnell; Anupama Reddy; Manway Liu; Audrey Kauffmann; Daniel Guthy; Dirk Erdmann; Alain De Pover; Pascal Furet; Hui Gao; Stephane Ferretti; Youzhen Wang; Joerg Trappe; Saskia M. Brachmann; Sauveur-Michel Maira; Christopher J. Wilson; Markus Boehm; Carlos Garcia-Echeverria; Patrick Chène; Marion Wiesmann; Robert Cozens; Joseph Lehar; Robert Schlegel; Giorgio Caravatti; Francesco Hofmann; William R. Sellers

Somatic PIK3CA mutations are frequently found in solid tumors, raising the hypothesis that selective inhibition of PI3Kα may have robust efficacy in PIK3CA-mutant cancers while sparing patients the side-effects associated with broader inhibition of the class I phosphoinositide 3-kinase (PI3K) family. Here, we report the biologic properties of the 2-aminothiazole derivative NVP-BYL719, a selective inhibitor of PI3Kα and its most common oncogenic mutant forms. The compound selectivity combined with excellent drug-like properties translates to dose- and time-dependent inhibition of PI3Kα signaling in vivo, resulting in robust therapeutic efficacy and tolerability in PIK3CA-dependent tumors. Novel targeted therapeutics such as NVP-BYL719, designed to modulate aberrant functions elicited by cancer-specific genetic alterations upon which the disease depends, require well-defined patient stratification strategies in order to maximize their therapeutic impact and benefit for the patients. Here, we also describe the application of the Cancer Cell Line Encyclopedia as a preclinical platform to refine the patient stratification strategy for NVP-BYL719 and found that PIK3CA mutation was the foremost positive predictor of sensitivity while revealing additional positive and negative associations such as PIK3CA amplification and PTEN mutation, respectively. These patient selection determinants are being assayed in the ongoing NVP-BYL719 clinical trials. Mol Cancer Ther; 13(5); 1117–29. ©2014 AACR.

Collaboration


Dive into the Christopher J. Wilson's collaboration.

Researchain Logo
Decentralizing Knowledge