Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Beat Steiner is active.

Publication


Featured researches published by Beat Steiner.


Journal of Biological Chemistry | 2013

Sphingosine 1-Phosphate (S1P) Receptor Agonists Mediate Pro-fibrotic Responses in Normal Human Lung Fibroblasts via S1P2 and S1P3 Receptors and Smad-independent Signaling

Katrin Sobel; Katalin Menyhart; Nina Killer; Bérengère Renault; Yasmina Bauer; Rolf Studer; Beat Steiner; Martin Bolli; Oliver Nayler; John Gatfield

Background: The sphingosine 1-phosphate (S1P) system may contribute to lung fibrosis. Results: S1P receptor (S1PR) agonists with different receptor subtype selectivity profiles varied in their potential to induce fibrotic responses in human lung fibroblasts. Conclusion: S1P2R and S1P3R signaling contributes to fibrotic responses in lung fibroblasts. Significance: Improving S1P1R modulator selectivity may lead to an improved safety profile of compounds for autoimmune therapy. Synthetic sphingosine 1-phosphate receptor 1 modulators constitute a new class of drugs for the treatment of autoimmune diseases. Sphingosine 1-phosphate (S1P) signaling, however, is also involved in the development of fibrosis. Using normal human lung fibroblasts, we investigated the induction of fibrotic responses by the S1P receptor (S1PR) agonists S1P, FTY720-P, ponesimod, and SEW2871 and compared them with the responses induced by the known fibrotic mediator TGF-β1. In contrast to TGF-β1, S1PR agonists did not induce expression of the myofibroblast marker α-smooth muscle actin. However, TGF-β1, S1P, and FTY720-P caused robust stimulation of extracellular matrix (ECM) synthesis and increased pro-fibrotic marker gene expression including connective tissue growth factor. Ponesimod showed limited and SEW2871 showed no pro-fibrotic potential in these readouts. Analysis of pro-fibrotic signaling pathways showed that in contrast to TGF-β1, S1PR agonists did not activate Smad2/3 signaling but rather activated PI3K/Akt and ERK1/2 signaling to induce ECM synthesis. The strong induction of ECM synthesis by the nonselective agonists S1P and FTY720-P was due to the stimulation of S1P2 and S1P3 receptors, whereas the weaker induction of ECM synthesis at high concentrations of ponesimod was due to a low potency activation of S1P3 receptors. Finally, in normal human lung fibroblast-derived myofibroblasts that were generated by TGF-β1 pretreatment, S1P and FTY720-P were effective stimulators of ECM synthesis, whereas ponesimod was inactive, because of the down-regulation of S1P3R expression in myofibroblasts. These data demonstrate that S1PR agonists are pro-fibrotic via S1P2R and S1P3R stimulation using Smad-independent pathways.


Laboratory Animals | 2007

Measurements of blood pressure and electrocardiogram in conscious freely moving guineapigs: a model for screening QT interval prolongation effects

Patrick Hess; Markus Rey; Daniel Wanner; Beat Steiner; Martine Clozel

The pro-arrhythmic risk inherent to a new drug must be assessed at an early preclinical stage. Telemetry system implantation is a method widely used in vivo in various species. The present study was designed to assess whether conscious freely moving guineapigs can be used to predict QT prolongation in vivo. The guineapig has three advantages over the dog and the primate. First, it has specific ion channels similar to man; second, a smaller amount of test article is required for the investigation and third, its housing is less expensive. Under sterile conditions and isoflurane anaesthesia, telemetry transmitters were implanted intraperitoneally in male Dunkin Hartley guineapigs. Blood pressure, heart rate and electrocardiographic intervals were measured from two days up to eight months. Chronic implantation of the telemetry device did not lead to anatomic or macroscopic alterations in the abdominal cavity and no inflammation of the peritoneum or infection was observed. Four reference compounds were used: three positive (sotalol, terfenadine and dofetilide) and one negative reference (enalapril). Single oral administration of all three positive references dose-dependently induced bradycardia and QT corrected (QTc) prolongation. In contrast, neither enalapril nor its vehicle prolonged the QTc. These results demonstrate that the guineapig is both a suitable model and a good alternative to dogs or primates to assess the potential of compounds for QT interval prolongation in the early stages of drug development.


Bioorganic & Medicinal Chemistry Letters | 2010

Piperidine-based renin inhibitors: upper chain optimization.

Olivier Corminboeuf; Olivier Bezencon; Ľuboš Remeň; Corinna Grisostomi; Sylvia Richard-Bildstein; Daniel Bur; Lars Prade; Panja Strickner; Patrick Hess; Walter Fischli; Beat Steiner; Alexander Treiber

The optimization of the 4-position of recently described new 3,4-disubstituted piperidine-based renin inhibitors is reported herein. The synthesis and characterization of compounds leading to the discovery of 11 (ACT-178882, MK-1597), a renin inhibitor with a suitable profile for development is described.


Bioorganic & Medicinal Chemistry Letters | 2010

Design and optimization of new piperidines as renin inhibitors

Olivier Corminboeuf; Olivier Bezencon; Corinna Grisostomi; Lubos Remen; Sylvia Richard-Bildstein; Daniel Bur; Lars Prade; Patrick Hess; Panja Strickner; Walter Fischli; Beat Steiner; Alexander Treiber

The discovery of a new series of piperidine-based renin inhibitors is described herein. SAR optimization upon the P3 renin sub-pocket is described, leading to the discovery of 9 and 41, two bioavailable renin inhibitors orally active at low doses in a transgenic rat model of hypertension.


Bioorganic & Medicinal Chemistry Letters | 2009

New classes of potent and bioavailable human renin inhibitors

Lubos Remen; Olivier Bezencon; Sylvia Richard-Bildstein; Daniel Bur; Lars Prade; Olivier Corminboeuf; Christoph Boss; Corinna Grisostomi; Thierry Sifferlen; Panja Strickner; Patrick Hess; Stephane Delahaye; Alexander Treiber; Thomas Weller; Christoph Binkert; Beat Steiner; Walter Fischli

New classes of de novo designed renin inhibitors are reported. Some of these compounds display excellent in vitro and in vivo activities toward human renin in a TGR model. The synthesis of these new types of mono- and bicyclic scaffolds are reported, and properties of selected compounds discussed.


PLOS ONE | 2013

Desensitization by Progressive Up-Titration Prevents First-Dose Effects on the Heart: Guinea Pig Study with Ponesimod, a Selective S1P1 Receptor Modulator

Markus Rey; Patrick Hess; Martine Clozel; Stephane Delahaye; John Gatfield; Oliver Nayler; Beat Steiner

Ponesimod, a selective S1P1 receptor modulator, reduces the blood lymphocyte count in all tested species by preventing egress of T and B cells from thymus and peripheral lymphoid organs. In addition, ponesimod transiently affects heart rate and atrioventricular (AV) conduction in humans, effects not observed in mice, rats, and dogs with selective S1P1 receptor modulators, suggesting that the regulation of heart rate and rhythm is species dependent. In the present study, we used conscious guinea pigs implanted with a telemetry device to investigate the effects of single and multiple oral doses of ponesimod on ECG variables, heart rate, and blood pressure. Oral administration of ponesimod did not affect the sinus rate (P rate) but dose-dependently induced AV block type I to III. A single oral dose of 0.1 mg/kg had no effect on ECG variables, while a dose of 3 mg/kg induced AV block type III in all treated guinea pigs. Repeated oral dosing of 1 or 3 mg/kg ponesimod resulted in rapid desensitization, so that the second dose had no or a clearly reduced effect on ECG variables as compared with the first dose. Resensitization of the S1P1 receptor in the heart was concentration dependent. After desensitization had been induced by the first dose of ponesimod, the cardiac system remained desensitized as long as the plasma concentration was ≥75 ng/ml. By using a progressive up-titration regimen, the first-dose effect of ponesimod on heart rate and AV conduction was significantly reduced due to desensitization of the S1P1 receptor. In summary, conscious guinea pigs implanted with a telemetry device represent a useful model to study first-dose effects of S1P1 receptor modulators on heart rate and rhythm. This knowledge was translated to a dosing regimen of ponesimod to be tested in humans to avoid or significantly reduce the first-dose effects.


Cellular Signalling | 2014

Sphingosine-1-phosphate (S1P) displays sustained S1P1 receptor agonism and signaling through S1P lyase-dependent receptor recycling.

John Gatfield; Lucile Monnier; Rolf Studer; Martin Bolli; Beat Steiner; Oliver Nayler

The sphingosine-1-phosphate (S1P) type 1 receptor (S1P1R) is a novel therapeutic target in lymphocyte-mediated autoimmune diseases. S1P1 receptor desensitization caused by synthetic S1P1 receptor agonists prevents T-lymphocyte egress from secondary lymphoid organs into the circulation. The selective S1P1 receptor agonist ponesimod, which is in development for the treatment of autoimmune diseases, efficiently reduces peripheral lymphocyte counts and displays efficacy in animal models of autoimmune disease. Using ponesimod and the natural ligand S1P, we investigated the molecular mechanisms leading to different signaling, desensitization and trafficking behavior of S1P1 receptors. In recombinant S1P1 receptor-expressing cells, ponesimod and S1P triggered Gαi protein-mediated signaling and β-arrestin recruitment with comparable potency and efficiency, but only ponesimod efficiently induced intracellular receptor accumulation. In human umbilical vein endothelial cells (HUVEC), ponesimod and S1P triggered translocation of the endogenous S1P1 receptor to the Golgi compartment. However, only ponesimod treatment caused efficient surface receptor depletion, receptor accumulation in the Golgi and degradation. Impedance measurements in HUVEC showed that ponesimod induced only short-lived Gαi protein-mediated signaling followed by resistance to further stimulation, whereas S1P induced sustained Gαi protein-mediated signaling without desensitization. Inhibition of S1P lyase activity in HUVEC rendered S1P an efficient S1P1 receptor internalizing compound and abrogated S1P-mediated sustained signaling. This suggests that S1P lyase - by facilitating S1P1 receptor recycling - is essential for S1P-mediated sustained signaling, and that synthetic agonists are functional antagonists because they are not S1P lyase substrates.


PLOS ONE | 2013

Therapeutic Use of a Selective S1P1 Receptor Modulator Ponesimod in Autoimmune Diabetes

Sylvaine You; Luca Piali; Chantal Kuhn; Beat Steiner; Virginia Sauvaget; Fabrice Valette; Martine Clozel; Jean-François Bach; Lucienne Chatenoud

In the present study, we investigated the therapeutic potential of a selective S1P1 receptor modulator, ponesimod, to protect and reverse autoimmune diabetes in non-obese diabetic (NOD) mice. Ponesimod was administered orally to NOD mice starting at 6, 10, 13 and 16 weeks of age up to 35 weeks of age or to NOD mice showing recent onset diabetes. Peripheral blood and spleen B and T cell counts were significantly reduced after ponesimod administration. In pancreatic lymph nodes, B lymphocytes were increased and expressed a transitional 1-like phenotype. Chronic oral ponesimod treatment efficiently prevented autoimmune diabetes in 6, 10 and 16 week-old pre-diabetic NOD mice. Treatment withdrawal led to synchronized disease relapse. Ponesimod did not inhibit the differentiation of autoreactive T cells as assessed by adoptive transfer of lymphocytes from treated disease-free NOD mice. In addition, it did not affect the migration, proliferation and activation of transgenic BDC2.5 cells into the target tissue. However, ponesimod inhibited spreading of the T cell responses to islet-specific glucose-6-phosphatase catalytic subunit-related protein (IGRP). Treatment of diabetic NOD mice with ponesimod induced disease remission. However, here again, upon treatment cessation, the disease rapidly recurred. This recurrence was effectively prevented by combination treatment with a CD3 antibody leading to the restoration of self-tolerance. In conclusion, treatment with a selective S1P1 modulator in combination with CD3 antibody represents a promising therapeutic approach for the treatment of autoimmune diabetes.


Journal of the Renin-Angiotensin-Aldosterone System | 2011

Characterization of a stable, hypertensive rat model suitable for the consecutive evaluation of human renin inhibitors

René St-Jacques; Sylvie Toulmond; Anick Auger; Christoph Binkert; Wanda Cromlish; Walter Fischli; Jennifer Harris; Patrick Hess; Jie Lan; Susana Liu; Denis Riendeau; Beat Steiner; M. David Percival

Introduction: The hypertensive double-transgenic (dTG) rat strain, expressing human renin and angiotensinogen, develops severe hypertension and organ damage and 50% of individuals die by 7 weeks of age. Here, we characterise a variation of this model in which animals present stable hypertension. Materials and methods: The effect of renin—angiotensin system blockers on blood pressure was determined with adult dTG rats treated with enalapril from 3 to 12 weeks of age. Tissue expression levels of renin and angiotensinogen were determined in dTG rats and rhesus monkeys by quantitative PCR. Results: Upon withdrawal from enalapril, mean arterial pressure (MAP) rose to 160—180 mmHg, with 95% of the female dTG rats surviving for 6 to 12 months, In Sprague-Dawley (SD) rats and rhesus monkeys, renin mRNA was absent or weakly expressed in most tissues, except for the kidneys and adrenals. In dTG rats, human renin expression was high in many additional tissues. The expression of human angiotensinogen in dTG rats followed a similar tissue pattern to SD and rhesus monkey angiotensinogen. Oral dosing of aliskiren, enalapril or losartan provided a similar maximal reduction in MAP and duration of efficacy in telemetrised dTG rats. Conclusions: Enalapril-pretreated dTG rats are suitable for long-term MAP monitoring and sequential evaluation of human renin inhibitors.


Molecular Pharmacology | 2018

S1P1 modulator-induced Gαi Signaling and β-Arrestin Recruitment Are Both Necessary to Induce Rapid and Efficient Reduction of Blood Lymphocyte Count in vivo

Magdalena Birker-Robaczewska; Martin Bolli; Markus Rey; Ruben de Kanter; Christopher Kohl; Cyrille Lescop; Maxime Boucher; Sylvie Poirey; Beat Steiner; Oliver Nayler

S1P1 (sphingosine-1-phosphate receptor 1) agonists prevent lymphocyte egress from secondary lymphoid organs and cause a reduction in the number of circulating blood lymphocytes. We hypothesized that S1P1 receptor modulators with pathway-selective signaling properties could help to further elucidate the molecular mechanisms involved in lymphocyte trapping. A proprietary S1P1 receptor modulator library was screened for compounds with clear potency differences in β-arrestin recruitment and G protein alpha i subunit (Gαi) protein-mediated signaling. We describe here the structure-activity relationships of highly potent S1P1 modulators with apparent pathway selectivity for β-arrestin recruitment. The most differentiated compound, D3-2, displayed a 180-fold higher potency in the β-arrestin recruitment assay (EC50 0.9 nM) compared with the Gαi-activation assay (167 nM), whereas ponesimod, a S1P1 modulator that is currently in advanced clinical development in multiple sclerosis, was equipotent in both assays (EC50 1.5 and 1.1 nM, respectively). Using these novel compounds as pharmacological tools, we showed that although a high potency in β-arrestin recruitment is required to fully internalize S1P1 receptors, the potency in inducing Gαi signaling determines the rate of receptor internalization in vitro. In contrast to ponesimod, the compound D3-2 did not reduce the number or circulating lymphocytes in rats despite high plasma exposures. Thus, for rapid and maximal S1P1 receptor internalization a high potency in both Gαi signaling and β-arrestin recruitment is mandatory and this translates into efficient reduction of the number of circulating lymphocytes in vivo.

Collaboration


Dive into the Beat Steiner's collaboration.

Researchain Logo
Decentralizing Knowledge