Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Crystal N. Marconett is active.

Publication


Featured researches published by Crystal N. Marconett.


Nature Communications | 2014

Characterizing the genetic basis of methylome diversity in histologically normal human lung tissue

Jianxin Shi; Crystal N. Marconett; Jubao Duan; Paula L. Hyland; Peng Li; Zhaoming Wang; William Wheeler; Beiyun Zhou; Mihaela Campan; Diane S. Lee; Jing Huang; Weiyin Zhou; Timothy J. Triche; Laufey Amundadottir; Andrew Warner; Amy Hutchinson; Po Han Chen; Brian Chung; Angela C. Pesatori; Dario Consonni; Pier Alberto Bertazzi; Andrew W. Bergen; Mathew Freedman; Kimberly D. Siegmund; Benjamin P. Berman; Zea Borok; Nilanjan Chatterjee; Margaret A. Tucker; Neil E. Caporaso; Stephen J. Chanock

The genetic regulation of the human epigenome is not fully appreciated. Here we describe the effects of genetic variants on the DNA methylome in human lung based on methylation-quantitative trait loci (meQTL) analyses. We report 34,304 cis- and 585 trans-meQTLs, a genetic-epigenetic interaction of surprising magnitude, including a regulatory hotspot. These findings are replicated in both breast and kidney tissues and show distinct patterns: cis-meQTLs mostly localize to CpG sites outside of genes, promoters, and CpG islands (CGIs), while trans-meQTLs are over-represented in promoter CGIs. meQTL SNPs are enriched in CTCF binding sites, DNaseI hypersensitivity regions and histone marks. Importantly, 4 of the 5 established lung cancer risk loci in European ancestry are cis-meQTLs and, in aggregate, cis-meQTLs are enriched for lung cancer risk in a genome-wide analysis of 11,587 subjects. Thus, inherited genetic variation may affect lung carcinogenesis by regulating the human methylome.


Carcinogenesis | 2011

Indole-3-carbinol downregulation of telomerase gene expression requires the inhibition of estrogen receptor-alpha and Sp1 transcription factor interactions within the hTERT promoter and mediates the G1 cell cycle arrest of human breast cancer cells

Crystal N. Marconett; Shyam N. Sundar; Min Tseng; Antony S. Tin; Kalvin Q. Tran; Kelly M. Mahuron; Leonard F. Bjeldanes; Gary L. Firestone

Indole-3-carbinol (I3C), a naturally occurring hydrolysis product of glucobrassicin from cruciferous vegetables such as broccoli, cabbage and Brussels sprouts, is an anticancer phytochemical that triggers complementary sets of antiproliferative pathways to induce a cell cycle arrest of estrogen-responsive MCF7 breast cancer cells. I3C strongly downregulated transcript expression of the catalytic subunit of the human telomerase (hTERT) gene, which correlated with the dose-dependent indole-mediated G(1) cell cycle arrest without altering the transcript levels of the RNA template (hTR) for telomerase elongation. Exogenous expression of hTERT driven by a constitutive promoter prevented the I3C-induced cell cycle arrest and rescued the I3C inhibition of telomerase enzymatic activity and activation of cellular senescence. Time course studies showed that I3C downregulated expression of estrogen receptor-alpha (ERα) and cyclin-dependent kinase-6 transcripts levels (which is regulated through the Sp1 transcription factor) prior to the downregulation of hTERT suggesting a mechanistic link. Chromatin immunoprecipitation assays demonstrated that I3C disrupted endogenous interactions of both ERα and Sp1 with an estrogen response element-Sp1 composite element within the hTERT promoter. I3C inhibited 17β-estradiol stimulated hTERT expression and stimulated the production of threonine-phosphorylated Sp1, which inhibits Sp1-DNA interactions. Exogenous expression of both ERα and Sp1, but not either alone, in MCF7 cells blocked the I3C-mediated downregulation of hTERT expression. These results demonstrate that I3C disrupts the combined ERα- and Sp1-driven transcription of hTERT gene expression, which plays a significant role in the I3C-induced cell cycle arrest of human breast cancer cells.


Molecular Biology of the Cell | 2010

Indole-3-Carbinol Triggers Aryl Hydrocarbon Receptor-dependent Estrogen Receptor (ER)α Protein Degradation in Breast Cancer Cells Disrupting an ERα-GATA3 Transcriptional Cross-Regulatory Loop

Crystal N. Marconett; Shyam N. Sundar; Kevin M. Poindexter; Theresa Ryan Stueve; Leonard F. Bjeldanes; Gary L. Firestone

We have established in human breast cancer cells that indole-3-carbinol (I3C), a promising anti-cancer phytochemical from Brassica vegetables, ablates ERα expression by stimulating the Rbx-1 E3 ligase mediated degradation of ERα protein and disruption of a cross-regulatory positive feedback loop involving ERα and the GATA3 transcription factor.


Carcinogenesis | 2008

Artemisinin selectively decreases functional levels of estrogen receptor-alpha and ablates estrogen-induced proliferation in human breast cancer cells

Shyam N. Sundar; Crystal N. Marconett; Victor B. Doan; Jamin A. Willoughby; Gary L. Firestone

MCF7 cells are an estrogen-responsive human breast cancer cell line that expresses both estrogen receptor (ER) alpha and ERbeta. Treatment of MCF7 cells with artemisinin, an antimalarial phytochemical from the sweet wormwood plant, effectively blocked estrogen-stimulated cell cycle progression induced by either 17beta-estradiol (E(2)), an agonist for both ERs, or by propyl pyrazole triol (PPT), a selective ERalpha agonist. Artemisinin strongly downregulated ERalpha protein and transcripts without altering expression or activity of ERbeta. Transfection of MCF7 cells with ERalpha promoter-linked luciferase reporter plasmids revealed that the artemisinin downregulation of ERalpha promoter activity accounted for the loss of ERalpha expression. Artemisinin treatment ablated the estrogenic induction of endogenous progesterone receptor (PR) transcripts by either E(2) or PPT and inhibited the estrogenic stimulation of a luciferase reporter plasmid driven by consensus estrogen response elements (EREs). Chromatin immunoprecipitation assays revealed that artemisinin significantly downregulated the level of endogeneous ERalpha bound to the PR promoter, whereas the level of bound endogeneous ERbeta was not altered. Treatment of MCF7 cells with artemisinin and the pure antiestrogen fulvestrant resulted in a cooperative reduction of ERalpha protein levels and enhanced G(1) cell cycle arrest compared with the effects of either compound alone. Our results show that artemisinin switches proliferative human breast cancer cells from expressing a high ERalpha:ERbeta ratio to a condition in which ERbeta predominates, which parallels the physiological state linked to antiproliferative events in normal mammary epithelium.


PLOS Genetics | 2013

Integrated transcriptomic and epigenomic analysis of primary human lung epithelial cell differentiation.

Crystal N. Marconett; Beiyun Zhou; Megan E. Rieger; Suhaida A. Selamat; Mickael Dubourd; Xiaohui Fang; Sean Lynch; Theresa Ryan Stueve; Kimberly D. Siegmund; Benjamin P. Berman; Zea Borok; Ite A. Laird-Offringa

Elucidation of the epigenetic basis for cell-type specific gene regulation is key to gaining a full understanding of how the distinct phenotypes of differentiated cells are achieved and maintained. Here we examined how epigenetic changes are integrated with transcriptional activation to determine cell phenotype during differentiation. We performed epigenomic profiling in conjunction with transcriptomic profiling using in vitro differentiation of human primary alveolar epithelial cells (AEC). This model recapitulates an in vivo process in which AEC transition from one differentiated cell type to another during regeneration following lung injury. Interrogation of histone marks over time revealed enrichment of specific transcription factor binding motifs within regions of changing chromatin structure. Cross-referencing of these motifs with pathways showing transcriptional changes revealed known regulatory pathways of distal alveolar differentiation, such as the WNT and transforming growth factor beta (TGFB) pathways, and putative novel regulators of adult AEC differentiation including hepatocyte nuclear factor 4 alpha (HNF4A), and the retinoid X receptor (RXR) signaling pathways. Inhibition of the RXR pathway confirmed its functional relevance for alveolar differentiation. Our incorporation of epigenetic data allowed specific identification of transcription factors that are potential direct upstream regulators of the differentiation process, demonstrating the power of this approach. Integration of epigenomic data with transcriptomic profiling has broad application for the identification of regulatory pathways in other models of differentiation.


American Journal of Respiratory Cell and Molecular Biology | 2014

Knockout Mice Reveal Key Roles for Claudin 18 in Alveolar Barrier Properties and Fluid Homeostasis

Guanglei Li; Per Flodby; Jiao Luo; Hidenori Kage; Arnold Sipos; Danping Gao; Yanbin Ji; LaMonta L. Beard; Crystal N. Marconett; Lucas DeMaio; Yong Ho Kim; Kwang-Jin Kim; Ite A. Laird-Offringa; Parviz Minoo; Janice M. Liebler; Beiyun Zhou; Edward D. Crandall; Zea Borok

Claudin proteins are major constituents of epithelial and endothelial tight junctions (TJs) that regulate paracellular permeability to ions and solutes. Claudin 18, a member of the large claudin family, is highly expressed in lung alveolar epithelium. To elucidate the role of claudin 18 in alveolar epithelial barrier function, we generated claudin 18 knockout (C18 KO) mice. C18 KO mice exhibited increased solute permeability and alveolar fluid clearance (AFC) compared with wild-type control mice. Increased AFC in C18 KO mice was associated with increased β-adrenergic receptor signaling together with activation of cystic fibrosis transmembrane conductance regulator, higher epithelial sodium channel, and Na-K-ATPase (Na pump) activity and increased Na-K-ATPase β1 subunit expression. Consistent with in vivo findings, C18 KO alveolar epithelial cell (AEC) monolayers exhibited lower transepithelial electrical resistance and increased solute and ion permeability with unchanged ion selectivity. Claudin 3 and claudin 4 expression was markedly increased in C18 KO mice, whereas claudin 5 expression was unchanged and occludin significantly decreased. Microarray analysis revealed changes in cytoskeleton-associated gene expression in C18 KO mice, consistent with observed F-actin cytoskeletal rearrangement in AEC monolayers. These findings demonstrate a crucial nonredundant role for claudin 18 in the regulation of alveolar epithelial TJ composition and permeability properties. Increased AFC in C18 KO mice identifies a role for claudin 18 in alveolar fluid homeostasis beyond its direct contributions to barrier properties that may, at least in part, compensate for increased permeability.


Molecular and Cellular Endocrinology | 2012

Indole-3-Carbinol disrupts estrogen receptor-alpha dependent expression of insulin-like growth factor-1 receptor and insulin receptor substrate-1 and proliferation of human breast cancer cells

Crystal N. Marconett; Ankur K. Singhal; Shyam N. Sundar; Gary L. Firestone

We previously established that Indole-3-Carbinol (I3C), a natural hydrolysis product of glucobrassicin in cruciferous vegetables, arrests the proliferation of estrogen-dependent human breast cancer cells and induces protein degradation of Estrogen Receptor-alpha (ERα). We demonstrate in human MCF-7 breast cancer cells that I3C ablates expression of Insulin-like Growth Factor Receptor-1 (IGF1R) and Insulin Receptor Substrate-1 (IRS1), downstream effectors of the IGF1 signaling pathway. Exogenous ERα reversed the I3C mediated loss of IGF1R and IRS1 gene expression demonstrating that down-regulation of ERα is functionally linked to I3C control of IGF1R and IRS1 expression. I3C disrupted binding of endogenous ERα, but not Sp1, to ERE-Sp1 composite elements within the IGF1R/IRS1 promoters. Exogenous ERα abrogated, and combined expression of IGF1R and IRS1 attenuated, the I3C mediated cell cycle arrest. Therefore, I3C inhibits proliferation of estrogen-sensitive breast cancer cells through disruption of ERα-mediated transcription of cell signaling components within the IGF1 cascade.


American Journal of Physiology-lung Cellular and Molecular Physiology | 2014

Claudin 4 knockout mice: normal physiological phenotype with increased susceptibility to lung injury

Hidenori Kage; Per Flodby; Danping Gao; Yong Ho Kim; Crystal N. Marconett; Lucas DeMaio; Kwang-Jin Kim; Edward D. Crandall; Zea Borok

Claudins are tight junction proteins that regulate paracellular ion permeability of epithelium and endothelium. Claudin 4 has been reported to function as a paracellular sodium barrier and is one of three major claudins expressed in lung alveolar epithelial cells (AEC). To directly assess the role of claudin 4 in regulation of alveolar epithelial barrier function and fluid homeostasis in vivo, we generated claudin 4 knockout (Cldn4 KO) mice. Unexpectedly, Cldn4 KO mice exhibited normal physiological phenotype although increased permeability to 5-carboxyfluorescein and decreased alveolar fluid clearance were noted. Cldn4 KO AEC monolayers exhibited unchanged ion permeability, higher solute permeability, and lower short-circuit current compared with monolayers from wild-type mice. Claudin 3 and 18 expression was similar between wild-type and Cldn4 KO alveolar epithelial type II cells. In response to either ventilator-induced lung injury or hyperoxia, claudin 4 expression was markedly upregulated in wild-type mice, whereas Cldn4 KO mice showed greater degrees of lung injury. RNA sequencing, in conjunction with differential expression and upstream analysis after ventilator-induced lung injury, suggested Egr1, Tnf, and Il1b as potential mediators of increased lung injury in Cldn4 KO mice. These results demonstrate that claudin 4 has little effect on normal lung physiology but may function to protect against acute lung injury.


Cancer Biology & Therapy | 2010

BZL101, a phytochemical extract from the Scutellaria barbata plant, disrupts proliferation of human breast and prostate cancer cells through distinct mechanisms dependent on the cancer cell phenotype

Crystal N. Marconett; Travis J. Morgenstern; Adrianna K. San Roman; Shyam N. Sundar; Ankur K. Singhal; Gary L. Firestone

BZL101 is an aqueous extract from the Scutellaria barbata plant shown to have anticancer properties in a variety of human cancers. In order to determine its efficacy on human reproductive cancers, we assessed the responses of two human breast cancer cell lines, estrogen sensitive MCF7 and estrogen insensitive MDA-MB-231, and of two human prostate cancer cell lines, androgen sensitive LNCaP and androgen insensitive PC3 which are human cell lines that represent early and late stage reproductive cancers. BZL101 inhibited reproductive cancer growth in all cell lines by regulating expression levels of key cell cycle components that differ with respect to the cancer cell phenotypes. In early stage estrogen sensitive MCF7 cells, BZL101 induced a G1 cell cycle arrest and ablated expression of key G1 cell cycle regulators Cyclin D1, CDK2, and CDK4, as well as growth factor stimulatory pathways and estrogen receptor-α expression. Transfection of luciferase reporter plasmids revealed that the loss of CDK2, CDK4 and estrogen receptor-α transcript expression resulted from the BZL-dependent ablation of promoter activities. BZL101 growth arrests early stage androgen sensitive LNCaP cells in the G2/M phase with corresponding decreases in Cyclin B1, CDK1, and androgen receptor expression. In late stage hormone insensitive breast (MDA-MB-231) and prostate (PC3) cancer cells, BZL101 induced an S phase arrest with corresponding ablations in Cyclin A2 and CDK2 expression. Our results demonstrate that BZL101 exerts phenotype specific anti-proliferative gene expression responses in human breast and prostate cancer cells, which will be valuable in the potential development of BZL-based therapeutic strategies for human reproductive cancers.


Chemico-Biological Interactions | 2010

1-Benzyl-indole-3-carbinol is a novel indole-3-carbinol derivative with significantly enhanced potency of anti-proliferative and anti-estrogenic properties in human breast cancer cells

Hanh H. Nguyen; S. N. Lavrenov; Shyam N. Sundar; David Nguyen; Min Tseng; Crystal N. Marconett; Jenny Kung; Richard E. Staub; M. N. Preobrazhenskaya; Leonard F. Bjeldanes; Gary L. Firestone

Indole-3-carbinol (I3C), a natural autolysis product of a gluccosinolate present in Brassica vegetables such as broccoli and cabbage, has anti-proliferative and anti-estrogenic activities in human breast cancer cells. A new and significantly more potent I3C analogue, 1-benzyl-I3C was synthesized, and in comparison to I3C, this novel derivative displayed an approximate 1000-fold enhanced potency in suppressing the growth of both estrogen responsive (MCF-7) and estrogen-independent (MDA-MB-231) human breast cancer cells (I3C IC(50) of 52 microM, and 1-benzyl-I3C IC(50) of 0.05 microM). At significantly lower concentrations, 1-benzyl-I3C induced a robust G1 cell cycle arrest and elicited the key I3C-specific effects on expression and activity of G1-acting cell cycle genes including the disruption of endogenous interactions of the Sp1 transcription factor with the CDK6 promoter. Furthermore, in estrogen responsive MCF-7 cells, with enhanced potency 1-benzyl-I3C down-regulated production of estrogen receptor-alpha protein, acts with tamoxifen to arrest breast cancer cell growth more effectively than either compound alone, and inhibited the in vivo growth of human breast cancer cell-derived tumor xenografts in athymic mice. Our results implicate 1-benzyl-I3C as a novel, potent inhibitor of human breast cancer proliferation and estrogen responsiveness that could potentially be developed into a promising therapeutic agent for the treatment of indole-sensitive cancers.

Collaboration


Dive into the Crystal N. Marconett's collaboration.

Top Co-Authors

Avatar

Beiyun Zhou

University of Southern California

View shared research outputs
Top Co-Authors

Avatar

Zea Borok

University of Southern California

View shared research outputs
Top Co-Authors

Avatar

Ite A. Laird-Offringa

University of Southern California

View shared research outputs
Top Co-Authors

Avatar

Per Flodby

University of Southern California

View shared research outputs
Top Co-Authors

Avatar

Edward D. Crandall

University of Southern California

View shared research outputs
Top Co-Authors

Avatar

Chenchen Yang

University of Southern California

View shared research outputs
Top Co-Authors

Avatar

Theresa Ryan Stueve

University of Southern California

View shared research outputs
Top Co-Authors

Avatar

Yixin Liu

University of Southern California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Parviz Minoo

University of Southern California

View shared research outputs
Researchain Logo
Decentralizing Knowledge