Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Belisa Parmeggiani is active.

Publication


Featured researches published by Belisa Parmeggiani.


Biochimica et Biophysica Acta | 2014

Sulfite disrupts brain mitochondrial energy homeostasis and induces mitochondrial permeability transition pore opening via thiol group modification.

Mateus Grings; Alana Pimentel Moura; Alexandre Umpierrez Amaral; Belisa Parmeggiani; Juciano Gasparotto; José Cláudio Fonseca Moreira; Daniel Pens Gelain; Angela Terezinha de Souza Wyse; Moacir Wajner; Guilhian Leipnitz

Sulfite oxidase (SO) deficiency is biochemically characterized by the accumulation of sulfite, thiosulfate and S-sulfocysteine in tissues and biological fluids of the affected patients. The main clinical symptoms include severe neurological dysfunction and brain abnormalities, whose pathophysiology is still unknown. The present study investigated the in vitro effects of sulfite and thiosulfate on mitochondrial homeostasis in rat brain mitochondria. It was verified that sulfite per se, but not thiosulfate, decreased state 3, CCCP-stimulated state and respiratory control ratio in mitochondria respiring with glutamate plus malate. In line with this, we found that sulfite inhibited the activities of glutamate and malate (MDH) dehydrogenases. In addition, sulfite decreased the activity of a commercial solution of MDH, that was prevented by antioxidants and dithiothreitol. Sulfite also induced mitochondrial swelling and reduced mitochondrial membrane potential, Ca(2+) retention capacity, NAD(P)H pool and cytochrome c immunocontent when Ca(2+) was present in the medium. These alterations were prevented by ruthenium red, cyclosporine A (CsA) and ADP, supporting the involvement of mitochondrial permeability transition (MPT) in these effects. We further observed that N-ethylmaleimide prevented the sulfite-elicited swelling and that sulfite decreased free thiol group content in brain mitochondria. These findings indicate that sulfite acts directly on MPT pore containing thiol groups. Finally, we verified that sulfite reduced cell viability in cerebral cortex slices and that this effect was prevented by CsA. Therefore, it may be presumed that disturbance of mitochondrial energy homeostasis and MPT induced by sulfite could be involved in the neuronal damage characteristic of SO deficiency.


International Journal of Developmental Neuroscience | 2015

In vitro evidence that sulfite impairs glutamatergic neurotransmission and inhibits glutathione metabolism-related enzymes in rat cerebral cortex

Belisa Parmeggiani; Alana Pimentel Moura; Mateus Grings; Anna Paula Bumbel; Leonardo de Moura Alvorcem; Julia Tauana Pletsch; Carolina Gonçalves Fernandes; Angela Ts Wyse; Moacir Wajner; Guilhian Leipnitz

Sulfite oxidase (SOX) deficiency is an inherited neurometabolic disorder biochemically characterized by tissue accumulation and high urinary excretion of sulfite and thiosulfate. Affected patients present severe neurological dysfunction accompanied by seizures, whose pathophysiology is poorly known. In the present study we evaluated the in vitro effects of sulfite and thiosulfate on important parameters of glutamatergic neurotransmission and redox homeostasis in rat cerebral cortex slices. We verified that sulfite, but not thiosulfate, significantly decreased glutamate uptake when cerebral cortex slices were exposed during 1 h to these metabolites. We also observed that thiosulfate inhibited glutamine synthetase (GS) activity. A pronounced trend toward GS inhibition induced by sulfite was also found. Regarding redox homeostasis, sulfite, at the concentration of 10 μM, increased thiobarbituric acid‐reactive substances and decreased glutathione concentrations after 1 h of exposure. In contrast, thiosulfate did not alter these parameters. We also found that 500 μM sulfite increased sulfhydryl group content in rat cerebral cortex slices and increased GSH levels in a medium containing oxidized GSH (GSSG) and devoid of cortical slices, suggesting that sulfite reacts with disulfide bonds to generate sulfhydryl groups. Moreover, sulfite and thiosulfate did not alter the activities of glutathione peroxidase (GPx), glutathione reductase (GR), glutathione S‐transferase (GST) and glucose‐6‐phosphate dehydrogenase (G6PDH) after 1 h of incubation. However, sulfite inhibited the activities of GPx, GST and G6PDH when cortical slices were exposed for 3 h to sulfite. We finally verified that sulfite did not induce cell death after 1 h of incubation. Our data show that sulfite impairs glutamatergic neurotransmission and redox homeostasis in cerebral cortex. Therefore, it may be presumed that these pathomechanisms contribute, at least in part, to the seizures observed in patients affected by SOX deficiency.


Biochimica et Biophysica Acta | 2016

Higher susceptibility of cerebral cortex and striatum to sulfite neurotoxicity in sulfite oxidase-deficient rats

Mateus Grings; Alana Pimentel Moura; Belisa Parmeggiani; Marcela Moreira Motta; Rafael Mello Boldrini; Pauline Maciel August; Cristiane Matté; Angela Terezinha de Souza Wyse; Moacir Wajner; Guilhian Leipnitz

Patients affected by sulfite oxidase (SO) deficiency present severe seizures early in infancy and progressive neurological damage, as well as tissue accumulation of sulfite, thiosulfate and S-sulfocysteine. Since the pathomechanisms involved in the neuropathology of SO deficiency are still poorly established, we evaluated the effects of sulfite on redox homeostasis and bioenergetics in cerebral cortex, striatum, cerebellum and hippocampus of rats with chemically induced SO deficiency. The deficiency was induced in 21-day-old rats by adding 200ppm of tungsten, a molybdenum competitor, in their drinking water for 9weeks. Sulfite (70mg/kg/day) was also administered through the drinking water from the third week of tungsten supplementation until the end of the treatment. Sulfite decreased reduced glutathione concentrations and the activities of glutathione reductase and glutathione S-transferase (GST) in cerebral cortex and of GST in cerebellum of SO-deficient rats. Moreover, sulfite increased the activities of complexes II and II-III in striatum and of complex II in hippocampus, but reduced the activity of complex IV in striatum of SO-deficient rats. Sulfite also decreased the mitochondrial membrane potential in cerebral cortex and striatum, whereas it had no effect on mitochondrial mass in any encephalic tissue evaluated. Finally, sulfite inhibited the activities of malate and glutamate dehydrogenase in cerebral cortex of SO-deficient rats. Taken together, our findings indicate that cerebral cortex and striatum are more vulnerable to sulfite-induced toxicity than cerebellum and hippocampus. It is presumed that these pathomechanisms may contribute to the pathophysiology of neurological damage found in patients affected by SO deficiency.


Biochimica et Biophysica Acta | 2017

Bezafibrate prevents mitochondrial dysfunction, antioxidant system disturbance, glial reactivity and neuronal damage induced by sulfite administration in striatum of rats: Implications for a possible therapeutic strategy for sulfite oxidase deficiency

Mateus Grings; Alana Pimentel Moura; Belisa Parmeggiani; Julia Tauana Pletsch; Gabriela Miranda Fernandez Cardoso; Pauline Maciel August; Cristiane Matté; Angela Terezinha de Souza Wyse; Moacir Wajner; Guilhian Leipnitz

Sulfite accumulates in tissues of patients affected by sulfite oxidase (SO) deficiency, a neurometabolic disease characterized by seizures and progressive encephalopathy, often resulting in early death. We investigated the effects of sulfite on mitochondrial function, antioxidant system, glial reactivity and neuronal damage in rat striatum, as well as the potential protective effects of bezafibrate on sulfite-induced toxicity. Thirty-day-old rats were intrastriatally administered with sulfite (2μmol) or NaCl (2μmol; control) and euthanized 30min after injection for evaluation of biochemical parameters and western blotting, or 7days after injection for analysis of glial reactivity and neuronal damage. Treatment with bezafibrate (30 or 100mg/kg/day) was performed by gavage during 7days before (pre-treatment) or after sulfite administration. Sulfite decreased creatine kinase and citrate synthase activities, mitochondrial mass, and PGC-1α nuclear content whereas bezafibrate pre-treatment prevented these alterations. Sulfite also diminished cytochrome c oxidase (COX) IV-1 content, glutathione levels and the activities of glutathione peroxidase (GPx), glutathione reductase (GR), glutathione S-transferase (GST) and glucose-6-phosphate dehydrogenase (G6PDH). On the other hand, catalase activity was increased by sulfite. Bezafibrate pre-treatment prevented the reduction of GPx, GR, GST and G6PDH activities. Finally, sulfite induced glial reactivity and neuronal damage, which were prevented by bezafibrate when administered before or after sulfite administration. Our findings provide strong evidence that sulfite induces neurotoxicity that leads to glial reactivity and neuronal damage. Since bezafibrate exerts neuroprotective effects against sulfite toxicity, it may be an attractive agent for the development of novel therapeutic strategies for SO-deficient patients.


Molecular and Cellular Biochemistry | 2014

Evidence that glycine induces lipid peroxidation and decreases glutathione concentrations in rat cerebellum

Alana Pimentel Moura; Mateus Grings; Gustavo Flora Marcowich; Anna Paula Bumbel; Belisa Parmeggiani; Leonardo de Moura Alvorcem; Moacir Wajner; Guilhian Leipnitz

Patients with non-ketotic hyperglycinemia (NKH) present severe neurological symptoms and brain abnormalities involving cerebellum. Although the pathomechanisms underlying the cerebellum damage have not been studied, high tissue levels of glycine (GLY), the biochemical hallmark of this disorder have been suggested to contribute to the neuropathology of this disease. We investigated the in vitro effects of GLY on important parameters of oxidative stress and energy metabolism in cerebellum of 30-day-old rats. Our results show that GLY increased 2′,7′-dichlorofluorescin oxidation, suggesting that reactive species production are augmented by GLY in the cerebellum. However, hydrogen peroxide generation was not altered by GLY. GLY also increased thiobarbituric acid-reactive substances (TBA-RS) levels and reduced the glutathione (GSH) content, indicating that this amino acid provokes lipid oxidative damage and compromises the non-enzymatic antioxidant defenses, respectively, in cerebellum. The antioxidants melatonin and trolox (the hydrosoluble analog of vitamin E) prevented the GLY-induced increase of TBA-RS and decrease of GSH in cerebellum, indicating the involvement of hydroxyl and peroxyl radicals in these effects. The NMDA receptor antagonist MK-801 also attenuated GLY-induced decrease of GSH, suggesting that this effect is mediated through NMDA receptor. In contrast, GLY did not alter the protein carbonyl formation and total and protein-bound sulfhydryl group content, as well as catalase and superoxide dismutase activities. Furthermore, GLY did not alter the activities of the respiratory chain complexes and creatine kinase. Our present data indicate that oxidative stress elicited by GLY in vitro may be a potential pathomechanism involved in the cerebellar dysfunction observed in NKH.


Free Radical Research | 2016

3-Hydroxy-3-methylglutaric and 3-methylglutaric acids impair redox status and energy production and transfer in rat heart: relevance for the pathophysiology of cardiac dysfunction in 3-hydroxy-3-methylglutaryl-coenzyme A lyase deficiency

Mateus Struecker da Rosa; Bianca Seminotti; César Augusto João Ribeiro; Belisa Parmeggiani; Mateus Grings; Moacir Wajner; Guilhian Leipnitz

Abstract 3-Hydroxy-3-methylglutaryl-coenzyme A lyase (HL) deficiency is characterized by tissue accumulation of 3-hydroxy-3-methylglutaric (HMG), and 3-methylglutaric (MGA) acids. Affected patients present cardiomyopathy, whose pathomechanisms are not yet established. We investigated the effects of HMG and MGA on energy and redox homeostasis in rat heart using in vivo and in vitro models. In vivo experiments showed that intraperitoneal administration of HMG and MGA decreased the activities of the respiratory chain complex II and creatine kinase (CK), whereas HMG also decreased the activity of complex II–III. Furthermore, HMG and MGA injection increased reactive species production and carbonyl formation, and decreased glutathione concentrations. Regarding the enzymatic antioxidant defenses, HMG and MGA increased glutathione peroxidase (GPx) and glutathione reductase (GR) activities, while only MGA diminished the activities of superoxide dismutase (SOD) and catalase, as well as the protein content of SOD1. Pre-treatment with melatonin (MEL) prevented MGA-induced decrease of CK activity and SOD1 levels. In vitro results demonstrated that HMG and MGA increased reactive species formation, induced lipid peroxidation and decreased glutathione. We also verified that reactive species overproduction and glutathione decrease provoked by HMG and MGA were abrogated by MEL and lipoic acid (LA), while only MEL prevented HMG- and MGA-induced lipoperoxidation. Allopurinol (ALP) also prevented reactive species overproduction caused by both metabolites. Our data provide solid evidence that bioenergetics dysfunction and oxidative stress are induced by HMG and MGA in heart, which may explain the cardiac dysfunction observed in HL deficiency, and also suggest that antioxidant supplementation could be considered as adjuvant therapy for affected patients.


Neuroscience | 2014

DISRUPTION OF REDOX HOMEOSTASIS AND HISTOPATHOLOGICAL ALTERATIONS CAUSED BY IN VIVO INTRASTRIATAL ADMINISTRATION OF D-2-HYDROXYGLUTARIC ACID TO YOUNG RATS

M.S. da Rosa; Bianca Seminotti; Alexandre Umpierrez Amaral; Belisa Parmeggiani; F.H. de Oliveira; Guilhian Leipnitz; Moacir Wajner

High accumulation of D-2-hydroxyglutaric acid (D-2-HG) is the biochemical hallmark of patients affected by the inherited neurometabolic disorder D-2-hydroxyglutaric aciduria (D-2-HGA). Clinically, patients present neurological symptoms and basal ganglia injury whose pathophysiology is poorly understood. We investigated the ex vivo effects of intrastriatal administration of D-2-HG on important parameters of redox status in the striatum of weaning rats. D-2-HG in vivo administration increased malondialdehyde (MDA) and carbonyl formation (lipid and protein oxidative damage, respectively), as well as the production of reactive nitrogen species (RNS). D-2-HG also compromised the antioxidant defenses by decreasing reduced glutathione (GSH) concentrations, as well as the activities of superoxide dismutase (SOD) and glutathione peroxidase (GPx). Increased amounts of oxidized glutathione (GSSG) with no significant alteration of total glutathione (tGS) were also found. Furthermore, D-2-HG-induced lipid oxidation and reduction of GSH concentrations and GPx activity were prevented by the N-methyl-d-aspartate (NMDA) receptor antagonist dizocilpine maleate (MK-801) and the nitric oxide synthase (NOS) inhibitor N(ω)-nitro-l-arginine methyl ester (l-NAME), suggesting the participation of NMDA receptors and nitric oxide derivatives in these effects. Creatine also impeded D-2-HG-elicited MDA increase, but did not change the D-2-HG-induced diminution of GSH and of the activities of SOD and GPx. We also found that DCFH oxidation and H2O2 production were not altered by D-2-HG, making unlikely an important role for reactive oxygen species (ROS) and reinforcing the participation of RNS in the oxidative damage and the reduction of antioxidant defenses provoked by this organic acid. Vacuolization, lymphocytic infiltrates and macrophages indicating brain damage were also observed in the striatum of rats injected with D-2-HG. The present data provide in vivo solid evidence that D-2-HG disrupts redox homeostasis and causes histological alterations in the rat striatum probably mediated by NMDA overstimulation and RNS production. It is therefore presumed that disturbance of redox status may contribute at least in part to the basal ganglia alterations characteristic of patients affected by D-2-HGA.


Neurotoxicity Research | 2017

Disruption of Energy Transfer and Redox Status by Sulfite in Hippocampus, Striatum, and Cerebellum of Developing Rats

Leonardo de Moura Alvorcem; Mateus Struecker da Rosa; Nícolas Manzke Glänzel; Belisa Parmeggiani; Mateus Grings; Felipe Schmitz; Angela Terezinha de Souza Wyse; Moacir Wajner; Guilhian Leipnitz

Patients with sulfite oxidase (SO) deficiency present severe brain abnormalities, whose pathophysiology is not yet elucidated. We evaluated the effects of sulfite and thiosulfate, metabolites accumulated in SO deficiency, on creatine kinase (CK) activity, mitochondrial respiration and redox status in hippocampus, striatum and cerebellum of developing rats. Our in vitro results showed that sulfite and thiosulfate decreased CK activity, whereas sulfite also increased malondialdehyde (MDA) levels in all brain structures evaluated. Sulfite further diminished mitochondrial respiration and increased DCFH oxidation and hydrogen peroxide production in hippocampus. Sulfite-induced CK activity decrease was prevented by melatonin (MEL), resveratrol (RSV), and dithiothreitol while increase of MDA levels was prevented by MEL and RSV. Regarding the antioxidant system, sulfite increased glutathione concentrations in hippocampus and striatum. In addition, sulfite decreased the activities of glutathione peroxidase in all brain structures, of glutathione S-transferase in hippocampus and cerebellum, and of glutathione reductase in cerebellum. In vivo experiments performed with intrahippocampal administration of sulfite demonstrated that this metabolite increased superoxide dismutase activity without altering other biochemical parameters in rat hippocampus. Our data suggest that impairment of energy metabolism and redox status may be important pathomechanisms involved in brain damage observed in individuals with SO deficiency.


Biochimica et Biophysica Acta | 2017

Bioenergetics dysfunction, mitochondrial permeability transition pore opening and lipid peroxidation induced by hydrogen sulfide as relevant pathomechanisms underlying the neurological dysfunction characteristic of ethylmalonic encephalopathy

Gabriela Miranda Fernandez Cardoso; Julia Tauana Pletsch; Belisa Parmeggiani; Mateus Grings; Nícolas Manzke Glänzel; Larissa Daniele Bobermin; Alexandre Umpierrez Amaral; Moacir Wajner; Guilhian Leipnitz

Hydrogen sulfide (sulfide) accumulates at high levels in brain of patients with ethylmalonic encephalopathy (EE). In the present study, we evaluated whether sulfide could disturb energy and redox homeostasis, and induce mitochondrial permeability transition (mPT) pore opening in rat brain aiming to better clarify the neuropathophysiology of EE. Sulfide decreased the activities of citrate synthase and aconitase in rat cerebral cortex mitochondria, and of creatine kinase (CK) in rat cerebral cortex, striatum and hippocampus supernatants. Glutathione prevented sulfide-induced CK activity decrease in the cerebral cortex. Sulfide also diminished mitochondrial respiration in cerebral cortex homogenates, and dissipated mitochondrial membrane potential (ΔΨm) and induced swelling in the presence of calcium in brain mitochondria. Alterations in ΔΨm and swelling caused by sulfide were prevented by the combination of ADP and cyclosporine A, and by ruthenium red, indicating the involvement of mPT in these effects. Furthermore, sulfide increased the levels of malondialdehyde in cerebral cortex supernatants, which was prevented by resveratrol and attenuated by glutathione, and of thiol groups in a medium devoid of brain samples. Finally, we verified that sulfide did not alter cell viability and DCFH oxidation in cerebral cortex slices, primary cortical astrocyte cultures and SH-SY5Y cells. Our data provide evidence that bioenergetics disturbance and lipid peroxidation along with mPT pore opening are involved in the pathophysiology of brain damage observed in EE.


Molecular Neurobiology | 2018

Bezafibrate Prevents Glycine-Induced Increase of Antioxidant Enzyme Activities in Rat Striatum

Belisa Parmeggiani; Mateus Grings; Nevton Teixeira da Rosa-Junior; Renata Britto; Moacir Wajner; Guilhian Leipnitz

Non-ketotic hyperglycinemia (NKH) is a severe neurological disorder caused by defects in glycine (GLY) catabolism and characterized by a high cerebrospinal fluid/plasma GLY ratio. Treatment is often ineffective and limited to the control of symptoms and detoxification of GLY. In the present work, we investigated the in vivo effects of GLY intracerebroventricular administration on oxidative stress parameters in rat striatum, cerebral cortex, and hippocampus. In vitro effects of GLY were also evaluated in striatum. The effects of bezafibrate (BEZ), a potential neuroprotective agent, on the possible alterations caused by GLY administration were further evaluated. Our in vivo results showed that GLY increased the activities of the antioxidant enzymes superoxide dismutase (SOD), glutathione peroxidase (GPx), glutathione reductase (GR), and glucose-6-phosphate dehydrogenase (G6PDH) in striatum. Furthermore, GLY decreased the concentrations of total glutathione and reduced glutathione (GSH), as well as GSH/oxidized glutathione ratio in vivo in hippocampus. In vitro data also showed that GLY induced lipid peroxidation and decreased GSH in striatum. Regarding the effects of BEZ, we found that GLY-induced increase of GPx, SOD, and GR activities was attenuated or prevented by this compound. However, BEZ did not alter GLY-induced decrease of GSH in hippocampus. We hypothesize that GLY-induced increase of the activities of antioxidant enzymes in striatum occurs as a mechanism to avoid accumulation of reactive oxygen species and consequent oxidative damage. Furthermore, since BEZ prevented GLY-induced alterations, it might be considered as an adjuvant therapy for NKH.

Collaboration


Dive into the Belisa Parmeggiani's collaboration.

Top Co-Authors

Avatar

Guilhian Leipnitz

Universidade Federal do Rio Grande do Sul

View shared research outputs
Top Co-Authors

Avatar

Mateus Grings

Universidade Federal do Rio Grande do Sul

View shared research outputs
Top Co-Authors

Avatar

Moacir Wajner

Universidade Federal do Rio Grande do Sul

View shared research outputs
Top Co-Authors

Avatar

Alana Pimentel Moura

Universidade Federal do Rio Grande do Sul

View shared research outputs
Top Co-Authors

Avatar

Angela Terezinha de Souza Wyse

Universidade Federal do Rio Grande do Sul

View shared research outputs
Top Co-Authors

Avatar

Leonardo de Moura Alvorcem

Universidade Federal do Rio Grande do Sul

View shared research outputs
Top Co-Authors

Avatar

Alexandre Umpierrez Amaral

Universidade Federal do Rio Grande do Sul

View shared research outputs
Top Co-Authors

Avatar

Bianca Seminotti

Universidade Federal do Rio Grande do Sul

View shared research outputs
Top Co-Authors

Avatar

Julia Tauana Pletsch

Universidade Federal do Rio Grande do Sul

View shared research outputs
Top Co-Authors

Avatar

Anna Paula Bumbel

Universidade Federal do Rio Grande do Sul

View shared research outputs
Researchain Logo
Decentralizing Knowledge