Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Bianca Seminotti is active.

Publication


Featured researches published by Bianca Seminotti.


Brain Research | 2010

α-Ketoisocaproic acid and leucine provoke mitochondrial bioenergetic dysfunction in rat brain

Alexandre Umpierrez Amaral; Guilhian Leipnitz; Carolina Gonçalves Fernandes; Bianca Seminotti; Patrícia Fernanda Schuck; Moacir Wajner

Patients affected by maple syrup urine disease (MSUD) present severe neurological symptoms and brain abnormalities, whose pathophysiology is poorly known. In the present study we investigated the in vitro effects of leucine (Leu), alpha-ketoisocaproic acid (KIC) and alpha-hydroxyisovaleric acid (HIV), respectively, the branched-chain amino, keto and hydroxy acids that most accumulate in MSUD, on brain bioenergetic homeostasis, evaluating respiratory parameters obtained by oxygen consumption, membrane potential (Psim), NAD(P)H content, swelling and citric acid cycle enzyme activities in mitochondrial preparations from rat forebrain using glutamate plus malate, succinate or alpha-ketoglutarate as respiratory substrates. KIC increased state 4 and decreased the respiratory control ratio with all substrates, in contrast with Leu and HIV. Furthermore, KIC and Leu, but not HIV, decreased state 3 using alpha-ketoglutarate. A KIC-induced selective inhibition of alpha-ketoglutarate dehydrogenase activity was also verified, with no alteration of the other citric acid cycle activities. The ADP/O ratio and the mitochondrial NAD(P)H levels were also reduced by KIC using glutamate/malate and alpha-ketoglutarate. In addition, KIC caused a reduction in the Psim when alpha-ketoglutarate was the substrate. Finally, KIC was not able to induce mitochondrial swelling. The present data indicate that KIC acts as an uncoupler of oxidative phosphorylation and as a metabolic inhibitor possibly through its inhibitory effect on alpha-ketoglutarate dehydrogenase activity, while Leu acts as a metabolic inhibitor. It is suggested that impairment of mitochondrial homeostasis caused by the major metabolites accumulating in MSUD may be involved in the neuropathology of this disease.


Life Sciences | 2010

Neurochemical evidence that phytanic acid induces oxidative damage and reduces the antioxidant defenses in cerebellum and cerebral cortex of rats

Guilhian Leipnitz; Alexandre Umpierrez Amaral; Ângela Zanatta; Bianca Seminotti; Carolina Gonçalves Fernandes; Lisiane Aurélio Knebel; Carmen Regla Vargas; Moacir Wajner

AIMS In the present work we investigated the in vitro effects of phytanic acid (Phyt), that accumulates in Refsum disease and other peroxisomal diseases, on important parameters of oxidative stress in cerebellum and cerebral cortex from young rats. MAIN METHODS The parameters thiobarbituric acid-reactive substances levels (TBA-RS; lipid peroxidation), carbonyl formation and sulfhydryl oxidation (protein oxidative damage) and the concentrations of the most important nonenzymatic antioxidant defense reduced glutathione (GSH) were determined. KEY FINDINGS It was observed that Phyt significantly increased TBA-RS levels in both cerebral structures. This effect was prevented by the antioxidants alpha-tocopherol and melatonin, suggesting the involvement of free radicals. Phyt also provoked protein oxidative damage in both cerebellum and cerebral cortex, as determined by increased carbonyl content and sulfhydryl oxidation. Furthermore, Phyt significantly diminished the concentrations of GSH, while melatonin and alpha-tocopherol treatment totally blocked this effect. We also verified that Phyt does not behave as a direct acting oxidant, since Phyt did not oxidize commercial solutions of GSH and reduced cytochrome c to Phyt in a free cell medium. SIGNIFICANCE Our data indicate that oxidative stress is elicited in vitro by Phyt, a mechanism that may contribute at least in part to the pathophysiology of Refsum disease and other peroxisomal disorders where Phyt is accumulated.


Journal of Neuroscience Research | 2008

Evidence that 3-hydroxy-3-methylglutaric acid promotes lipid and protein oxidative damage and reduces the nonenzymatic antioxidant defenses in rat cerebral cortex.

Guilhian Leipnitz; Bianca Seminotti; Josué Haubrich; Manuela Borges Dalcin; Karina Borges Dalcin; Alexandre Solano; Giorgia de Bortoli; Rafael Borba Rosa; Alexandre Umpierrez Amaral; Carlos Severo Dutra-Filho; Alexandra Latini; Moacir Wajner

In the present work we investigated the in vitro effect of 3‐hydroxy‐3‐methylglutarate (HMG) that accumulates in 3‐hydroxy‐3‐methylglutaryl‐CoA lyase deficiency (HMGLD) on important parameters of oxidative stress in rat cerebral cortex. It was observed that HMG induced lipid peroxidation by significantly increasing chemiluminescence and levels of thiobarbituric acid‐reactive substances (TBA‐RS). This effect was prevented by the antioxidants α‐tocopherol, melatonin, N‐acetylcysteine, and superoxide dismutase plus catalase, suggesting that free radicals were involved in the lipid oxidative damage. On the other hand, HMG did not change TBA‐RS levels in intact or disrupted mitochondrial preparations, indicating that generation of oxidants by this organic acid was dependent on cytosolic mechanisms. HMG also induced protein oxidative damage in cortical supernatants, which was reflected by increased carbonyl content and sulfhydryl oxidation. Furthermore, HMG significantly reduced the nonenzymatic antioxidant defenses total‐radical trapping antioxidant potential, total antioxidant reactivity, and reduced glutathione (GSH) levels in rat cerebral cortex. HMG‐induced GSH reduction was totally blocked by melatonin pretreatment. We also verified that the decrease of GSH levels provoked by HMG in cortical supernatants was not due to a direct oxidative effect of this organic acid, because exposition of commercial GSH and purified membrane protein‐bound thiol groups to HMG in the absence of cortical supernatants did not decrease the reduced sulfhydryl groups. Finally, the activities of the main antioxidant enzymes were not altered by HMG exposure. Our data indicate that oxidative stress elicited in vitro by HMG may possibly contribute at least in part to the pathophysiology of the brain injury in HMGLD.


Life Sciences | 2008

Induction of oxidative stress by the metabolites accumulating in 3-methylglutaconic aciduria in cerebral cortex of young rats

Guilhian Leipnitz; Bianca Seminotti; Alexandre Umpierrez Amaral; Giorgia de Bortoli; Alexandre Solano; Patrícia Fernanda Schuck; Ângela Terezinha de Souza Wyse; Clovis Milton Duval Wannmacher; Alexandra Latini; Moacir Wajner

3-methylglutaconic (MGT), 3-methylglutaric (MGA) and occasionally 3-hydroxyisovaleric (OHIVA) acids accumulate in a group of diseases known as 3-methylglutaconic aciduria (MGTA). Although the clinical presentation of MGTA is mainly characterized by neurological symptoms, the mechanisms of brain damage in this disease are poorly known. In the present study we investigated the in vitro effect of MGT, MGA and OHIVA on various parameters of oxidative stress in cerebral cortex from young rats. Thiobarbituric acid-reactive substances (TBA-RS) and chemiluminescence were significantly increased by MGT, MGA and OHIVA, indicating that these metabolites induce lipid oxidative damage. Furthermore, the addition of melatonin, alpha-tocopherol and superoxide dismutase plus catalase fully prevented MGT-induced increase on TBA-RS, suggesting that free radicals were involved in this effect. These metabolites also provoked protein oxidative damage determined by increased carbonyl formation and sulfhydryl oxidation, but did not induce superoxide generation in submitochondrial particles. It was also verified that MGA and MGT significantly decreased the non-enzymatic antioxidant defenses in cerebral cortex supernatants and that melatonin and alpha-tocopherol totally blocked MGA-induced GSH reduction. The data indicate that the metabolites accumulating in MGTA elicit oxidative stress in vitro in the cerebral cortex. It is therefore presumed that this pathomechanism may be involved in the brain damage observed in patients affected by MGTA.


International Journal of Developmental Neuroscience | 2008

Lysine induces lipid and protein damage and decreases reduced glutathione concentrations in brain of young rats.

Bianca Seminotti; Guilhian Leipnitz; Alexandre Umpierrez Amaral; Carolina Gonçalves Fernandes; Lucila de Bortoli da Silva; Anelise Miotti Tonin; Carmen Regla Vargas; Moacir Wajner

The present work investigated the in vitro effects of lysine on important parameters of oxidative stress in cerebral cortex of young rats. Our results show that lysine significantly induced lipid peroxidation, as determined by increase of thiobarbituric acid‐reactive substances and chemiluminescence levels, as well as protein oxidative damage since carbonyl formation and sulfhydryl oxidation were enhanced by this amino acid. Furthermore, the addition of free radical scavengers significantly prevented lysine‐induced lipid oxidative damage, suggesting that free radicals were involved in this effect. Lysine also significantly diminished glutathione levels in cortical supernatants, decreasing, therefore, the major brain antioxidant defense. Finally, lysine markedly oxidized a glutathione commercial solution in a medium devoid of brain supernatants, indicating that it behaved as a direct acting oxidant. The present data indicate that lysine induces oxidative stress in cerebral cortex of young rats. Therefore, it is presumed that this pathomechanism may be involved at least in part in the neurological damage found in patients affected by disorders with hyperlysinemia.


Molecular Genetics and Metabolism | 2012

Induction of oxidative stress in brain of glutaryl-CoA dehydrogenase deficient mice by acute lysine administration

Bianca Seminotti; Mateus Struecker da Rosa; Carolina Gonçalves Fernandes; Alexandre Umpierrez Amaral; Luisa Macedo Braga; Guilhian Leipnitz; Diogo O. Souza; Michael Woontner; David M. Koeller; Stephen I. Goodman; Moacir Wajner

In the present work we evaluated a variety of indicators of oxidative stress in distinct brain regions (striatum, cerebral cortex and hippocampus), the liver, and heart of 30-day-old glutaryl-CoA dehydrogenase deficient (Gcdh(-/-)) mice. The parameters evaluated included thiobarbituric acid-reactive substances (TBA-RS), 2-7-dihydrodichlorofluorescein (DCFH) oxidation, sulfhydryl content, and reduced glutathione (GSH) concentrations. We also measured the activities of the antioxidant enzymes glutathione peroxidase (GPx), glutathione reductase (GR), catalase (CAT), superoxide dismutase (SOD) and glucose-6-phosphate dehydrogenase (G6PD). Under basal conditions glutaric (GA) and 3-OH-glutaric (3OHGA) acids were elevated in all tissues of the Gcdh(-/-) mice, but were essentially absent in WT animals. In contrast there were no differences between WT and Gcdh(-/-) mice in any of the indicators or oxidative stress under basal conditions. Following a single intra-peritoneal (IP) injection of lysine (Lys) there was a moderate increase of brain GA concentration in Gcdh(-/-) mice, but no change in WT. Lys injection had no effect on brain 3OHGA in either WT or Gcdh(-/-) mice. The levels of GA and 3OHGA were approximately 40% higher in striatum compared to cerebral cortex in Lys-treated mice. In the striatum, Lys administration provoked a marked increase of lipid peroxidation, DCFH oxidation, SOD and GR activities, as well as significant reductions of GSH levels and GPx activity, with no alteration of sulfhydryl content, CAT and G6PD activities. There was also evidence of increased lipid peroxidation and SOD activity in the cerebral cortex, along with a decrease of GSH levels, but to a lesser extent than in the striatum. In the hippocampus only mild increases of SOD activity and DCFH oxidation were observed. In contrast, Lys injection had no effect on any of the parameters of oxidative stress in the liver or heart of Gcdh(-/-) or WT animals. These results indicate that in Gcdh(-/-) mice cerebral tissue, particularly the striatum, is at greater risk for oxidative stress than peripheral tissues following Lys administration.


Molecular Genetics and Metabolism | 2012

Marked reduction of Na(+), K(+)-ATPase and creatine kinase activities induced by acute lysine administration in glutaryl-CoA dehydrogenase deficient mice.

Alexandre Umpierrez Amaral; Cristiane Cecatto; Bianca Seminotti; Ângela Zanatta; Carolina Gonçalves Fernandes; Estela Natacha Brandt Busanello; Luisa Macedo Braga; César Augusto João Ribeiro; Diogo O. Souza; Michael Woontner; David M. Koeller; Stephen I. Goodman; Moacir Wajner

Glutaric acidemia type I (GA I) is an inherited neurometabolic disorder caused by a severe deficiency of the mitochondrial glutaryl-CoA dehydrogenase activity leading to accumulation of predominantly glutaric (GA) and 3-hydroxyglutaric (3HGA) acids in the brain and other tissues. Affected patients usually present with hypotonia and brain damage and acute encephalopathic episodes whose pathophysiology is not yet fully established. In this study we investigated important parameters of cellular bioenergetics in brain, heart and skeletal muscle from 15-day-old glutaryl-CoA dehydrogenase deficient mice (Gcdh(-/-)) submitted to a single intra-peritoneal injection of saline (Sal) or lysine (Lys - 8 μmol/g) as compared to wild type (WT) mice. We evaluated the activities of the respiratory chain complexes II, II-III and IV, α-ketoglutarate dehydrogenase (α-KGDH), creatine kinase (CK) and synaptic Na(+), K(+)-ATPase. No differences of all evaluated parameters were detected in the Gcdh(-/-) relatively to the WT mice injected at baseline (Sal). Furthermore, mild increases of the activities of some respiratory chain complexes (II-III and IV) were observed in heart and skeletal muscle of Gcdh(-/-) and WT mice after Lys administration. However, the most marked effects provoked by Lys administration were marked decreases of the activities of Na(+), K(+)-ATPase in brain and CK in brain and skeletal muscle of Gcdh(-/-) mice. In contrast, brain α-KGDH activity was not altered in WT and Gcdh(-/-) injected with Sal or Lys. Our results demonstrate that reduction of Na(+), K(+)-ATPase and CK activities may play an important role in the pathogenesis of the neurodegenerative changes in GA I.


Molecular Genetics and Metabolism | 2013

Disruption of brain redox homeostasis in glutaryl-CoA dehydrogenase deficient mice treated with high dietary lysine supplementation.

Bianca Seminotti; Alexandre Umpierrez Amaral; Mateus Struecker da Rosa; Carolina Gonçalves Fernandes; Guilhian Leipnitz; Silvia Olivera-Bravo; Luis Barbeito; César Augusto João Ribeiro; Diogo O. Souza; Michael Woontner; Stephen I. Goodman; David M. Koeller; Moacir Wajner

Deficiency of glutaryl-CoA dehydrogenase (GCDH) activity or glutaric aciduria type I (GA I) is an inherited neurometabolic disorder biochemically characterized by predominant accumulation of glutaric acid and 3-hydroxyglutaric acid in the brain and other tissues. Affected patients usually present acute striatum necrosis during encephalopathic crises triggered by metabolic stress situations, as well as chronic leukodystrophy and delayed myelination. Considering that the mechanisms underlying the brain injury in this disease are not yet fully established, in the present study we investigated important parameters of oxidative stress in the brain (cerebral cortex, striatum and hippocampus), liver and heart of 30-day-old GCDH deficient knockout (Gcdh(-/-)) and wild type (WT) mice submitted to a normal lysine (Lys) (0.9% Lys), or high Lys diets (2.8% or 4.7% Lys) for 60 h. It was observed that the dietary supplementation of 2.8% and 4.7% Lys elicited noticeable oxidative stress, as verified by an increase of malondialdehyde concentrations (lipid oxidative damage) and 2-7-dihydrodichlorofluorescein (DCFH) oxidation (free radical production), as well as a decrease of reduced glutathione levels and alteration of various antioxidant enzyme activities (antioxidant defenses) in the cerebral cortex and the striatum, but not in the hippocampus, the liver and the heart of Gcdh(-/-) mice, as compared to WT mice receiving the same diets. Furthermore, alterations of oxidative stress parameters in the cerebral cortex and striatum were more accentuated in symptomatic, as compared to asymptomatic Gcdh(-/-) mice exposed to 4.7% Lys overload. Histopathological studies performed in the cerebral cortex and striatum of these animals exposed to high dietary Lys revealed increased expression of oxidative stress markers despite the absence of significant structural damage. The results indicate that a disruption of redox homeostasis in the cerebral cortex and striatum of young Gcdh(-/-) mice exposed to increased Lys diet may possibly represent an important pathomechanism of brain injury in GA I patients under metabolic stress.


International Journal of Developmental Neuroscience | 2009

Striatum is more vulnerable to oxidative damage induced by the metabolites accumulating in 3-hydroxy-3-methylglutaryl-CoA lyase deficiency as compared to liver

Guilhian Leipnitz; Bianca Seminotti; Carolina Gonçalves Fernandes; Alexandre Umpierrez Amaral; Ana Paula Beskow; Lucila de Bortoli da Silva; Ângela Zanatta; César Augusto João Ribeiro; Carmen Regla Vargas; Moacir Wajner

The present work investigated the in vitro effects of 3‐hydroxy‐3‐methylglutarate, 3‐methylglutarate, 3‐methylglutaconate and 3‐hydroxyisovalerate, which accumulate in 3‐hydroxy‐3‐methylglutaric aciduria, on important parameters of oxidative stress in striatum and liver of young rats, tissues that are injured in this disorder. Our results show that all metabolites induced lipid peroxidation (thiobarbituric acid‐reactive substances increase) and decreased glutathione levels in striatum, whereas 3‐hydroxy‐3‐methylglutarate, besides inducing the strongest effect, also altered thiobarbituric acid‐reactive substances and glutathione levels in the liver. Furthermore, 3‐hydroxy‐3‐methylglutarate, 3‐methylglutarate and 3‐methylglutaconate oxidized sulfhydryl groups in the striatum, but not in the liver. Our data indicate that 3‐hydroxy‐3‐methylglutarate behaves as a stronger pro‐oxidant agent compared to the other metabolites accumulating in 3‐hydroxy‐3‐methylglutaric aciduria and that the striatum present higher vulnerability to oxidative damage relatively to the liver.


Molecular Genetics and Metabolism | 2012

Reduction of Na + ,K + -ATPase activity and expression in cerebral cortex of glutaryl-CoA dehydrogenase deficient mice: A possible mechanism for brain injury in glutaric aciduria type I

Alexandre Umpierrez Amaral; Bianca Seminotti; Cristiane Cecatto; Carolina Gonçalves Fernandes; Estela Natacha Brandt Busanello; Ângela Zanatta; Luiza Wilges Kist; Maurício Reis Bogo; Diogo O. Souza; Michael Woontner; Stephen I. Goodman; David M. Koeller; Moacir Wajner

Mitochondrial dysfunction has been proposed to play an important role in the neuropathology of glutaric acidemia type I (GA I). However, the relevance of bioenergetics disruption and the exact mechanisms responsible for the cortical leukodystrophy and the striatum degeneration presented by GA I patients are not yet fully understood. Therefore, in the present work we measured the respiratory chain complexes activities I-IV, mitochondrial respiratory parameters state 3, state 4, the respiratory control ratio and dinitrophenol (DNP)-stimulated respiration (uncoupled state), as well as the activities of α-ketoglutarate dehydrogenase (α-KGDH), creatine kinase (CK) and Na+, K+-ATPase in cerebral cortex, striatum and hippocampus from 30-day-old Gcdh-/- and wild type (WT) mice fed with a normal or a high Lys (4.7%) diet. When a baseline (0.9% Lys) diet was given, we verified mild alterations of the activities of some respiratory chain complexes in cerebral cortex and hippocampus, but not in striatum from Gcdh-/- mice as compared to WT animals. Furthermore, the mitochondrial respiratory parameters and the activities of α-KGDH and CK were not modified in all brain structures from Gcdh-/- mice. In contrast, we found a significant reduction of Na(+), K(+)-ATPase activity associated with a lower degree of its expression in cerebral cortex from Gcdh-/- mice. Furthermore, a high Lys (4.7%) diet did not accentuate the biochemical alterations observed in Gcdh-/- mice fed with a normal diet. Since Na(+), K(+)-ATPase activity is required for cell volume regulation and to maintain the membrane potential necessary for a normal neurotransmission, it is presumed that reduction of this enzyme activity may represent a potential underlying mechanism involved in the brain swelling and cortical abnormalities (cortical atrophy with leukodystrophy) observed in patients affected by GA I.

Collaboration


Dive into the Bianca Seminotti's collaboration.

Top Co-Authors

Avatar

Guilhian Leipnitz

Universidade Federal do Rio Grande do Sul

View shared research outputs
Top Co-Authors

Avatar

Moacir Wajner

Universidade Federal do Rio Grande do Sul

View shared research outputs
Top Co-Authors

Avatar

Alexandre Umpierrez Amaral

Universidade Federal do Rio Grande do Sul

View shared research outputs
Top Co-Authors

Avatar

Carolina Gonçalves Fernandes

Universidade Federal do Rio Grande do Sul

View shared research outputs
Top Co-Authors

Avatar

Ângela Zanatta

Universidade Federal do Rio Grande do Sul

View shared research outputs
Top Co-Authors

Avatar

César Augusto João Ribeiro

Universidade Federal do Rio Grande do Sul

View shared research outputs
Top Co-Authors

Avatar

Diogo O. Souza

Universidade Federal do Rio Grande do Sul

View shared research outputs
Top Co-Authors

Avatar

Michael Woontner

University of Colorado Denver

View shared research outputs
Top Co-Authors

Avatar

Stephen I. Goodman

University of Colorado Denver

View shared research outputs
Top Co-Authors

Avatar

Mateus Struecker da Rosa

Universidade Federal do Rio Grande do Sul

View shared research outputs
Researchain Logo
Decentralizing Knowledge