Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ben J. Woodcroft is active.

Publication


Featured researches published by Ben J. Woodcroft.


Nature | 2010

The Amphimedon queenslandica genome and the evolution of animal complexity

Mansi Srivastava; Oleg Simakov; Jarrod Chapman; Bryony Fahey; Marie Gauthier; Therese Mitros; Gemma S. Richards; Cecilia Conaco; Michael Dacre; Uffe Hellsten; Claire Larroux; Nicholas H. Putnam; Mario Stanke; Maja Adamska; Aaron E. Darling; Sandie M. Degnan; Todd H. Oakley; David C. Plachetzki; Yufeng F. Zhai; Marcin Adamski; Andrew Calcino; Scott F. Cummins; David Goodstein; Christina Harris; Daniel J. Jackson; Sally P. Leys; Shengqiang Q. Shu; Ben J. Woodcroft; Michel Vervoort; Kenneth S. Kosik

Sponges are an ancient group of animals that diverged from other metazoans over 600 million years ago. Here we present the draft genome sequence of Amphimedon queenslandica, a demosponge from the Great Barrier Reef, and show that it is remarkably similar to other animal genomes in content, structure and organization. Comparative analysis enabled by the sequencing of the sponge genome reveals genomic events linked to the origin and early evolution of animals, including the appearance, expansion and diversification of pan-metazoan transcription factor, signalling pathway and structural genes. This diverse ‘toolkit’ of genes correlates with critical aspects of all metazoan body plans, and comprises cell cycle control and growth, development, somatic- and germ-cell specification, cell adhesion, innate immunity and allorecognition. Notably, many of the genes associated with the emergence of animals are also implicated in cancer, which arises from defects in basic processes associated with metazoan multicellularity.


Nature | 2008

Early origins and evolution of microRNAs and Piwi-interacting RNAs in animals

Andrew Grimson; Mansi Srivastava; Bryony Fahey; Ben J. Woodcroft; H. Rosaria Chiang; Nicole King; Bernard M. Degnan; Daniel S. Rokhsar; David P. Bartel

In bilaterian animals, such as humans, flies and worms, hundreds of microRNAs (miRNAs), some conserved throughout bilaterian evolution, collectively regulate a substantial fraction of the transcriptome. In addition to miRNAs, other bilaterian small RNAs, known as Piwi-interacting RNAs (piRNAs), protect the genome from transposons. Here we identify small RNAs from animal phyla that diverged before the emergence of the Bilateria. The cnidarian Nematostella vectensis (starlet sea anemone), a close relative to the Bilateria, possesses an extensive repertoire of miRNA genes, two classes of piRNAs and a complement of proteins specific to small-RNA biology comparable to that of humans. The poriferan Amphimedon queenslandica (sponge), one of the simplest animals and a distant relative of the Bilateria, also possesses miRNAs, both classes of piRNAs and a full complement of the small-RNA machinery. Animal miRNA evolution seems to have been relatively dynamic, with precursor sizes and mature miRNA sequences differing greatly between poriferans, cnidarians and bilaterians. Nonetheless, miRNAs and piRNAs have been available as classes of riboregulators to shape gene expression throughout the evolution and radiation of animal phyla.


Molecular Biology and Evolution | 2010

Parallel Evolution of Nacre Building Gene Sets in Molluscs

Daniel J. Jackson; Carmel McDougall; Ben J. Woodcroft; Patrick Moase; Robert A. Rose; Michael Kube; Richard Reinhardt; Daniel S. Rokhsar; Caroline Montagnani; Caroline Joubert; David Piquemal; Bernard M. Degnan

The capacity to biomineralize is closely linked to the rapid expansion of animal life during the early Cambrian, with many skeletonized phyla first appearing in the fossil record at this time. The appearance of disparate molluscan forms during this period leaves open the possibility that shells evolved independently and in parallel in at least some groups. To test this proposition and gain insight into the evolution of structural genes that contribute to shell fabrication, we compared genes expressed in nacre (mother-of-pearl) forming cells in the mantle of the bivalve Pinctada maxima and the gastropod Haliotis asinina. Despite both species having highly lustrous nacre, we find extensive differences in these expressed gene sets. Following the removal of housekeeping genes, less than 10% of all gene clusters are shared between these molluscs, with some being conserved biomineralization genes that are also found in deuterostomes. These differences extend to secreted proteins that may localize to the organic shell matrix, with less than 15% of this secretome being shared. Despite these differences, H. asinina and P. maxima both secrete proteins with repetitive low-complexity domains (RLCDs). Pinctada maxima RLCD proteins-for example, the shematrins-are predominated by silk/fibroin-like domains, which are absent from the H. asinina data set. Comparisons of shematrin genes across three species of Pinctada indicate that this gene family has undergone extensive divergent evolution within pearl oysters. We also detect fundamental bivalve-gastropod differences in extracellular matrix proteins involved in mollusc-shell formation. Pinctada maxima expresses a chitin synthase at high levels and several chitin deacetylation genes, whereas only one protein involved in chitin interactions is present in the H. asinina data set, suggesting that the organic matrix on which calcification proceeds differs fundamentally between these species. Large-scale differences in genes expressed in nacre-forming cells of Pinctada and Haliotis are compatible with the hypothesis that gastropod and bivalve nacre is the result of convergent evolution. The expression of novel biomineralizing RLCD proteins in each of these two molluscs and, interestingly, sea urchins suggests that the evolution of such structural proteins has occurred independently multiple times in the Metazoa.


PeerJ | 2014

GroopM: an automated tool for the recovery of population genomes from related metagenomes

Michael Imelfort; Donovan H. Parks; Ben J. Woodcroft; Paul G. Dennis; Philip Hugenholtz; Gene W. Tyson

Metagenomic binning methods that leverage differential population abundances in microbial communities (differential coverage) are emerging as a complementary approach to conventional composition-based binning. Here we introduce GroopM, an automated binning tool that primarily uses differential coverage to obtain high fidelity population genomes from related metagenomes. We demonstrate the effectiveness of GroopM using synthetic and real-world metagenomes, and show that GroopM produces results comparable with more time consuming, labor-intensive methods.


Nature | 2014

Methane dynamics regulated by microbial community response to permafrost thaw

Carmody K. McCalley; Ben J. Woodcroft; Suzanne B. Hodgkins; Richard Wehr; Eun Hae Kim; Rhiannon Mondav; Patrick M. Crill; Jeffrey P. Chanton; Virginia I. Rich; Gene W. Tyson; Scott R. Saleska

Permafrost contains about 50% of the global soil carbon. It is thought that the thawing of permafrost can lead to a loss of soil carbon in the form of methane and carbon dioxide emissions. The magnitude of the resulting positive climate feedback of such greenhouse gas emissions is still unknown and may to a large extent depend on the poorly understood role of microbial community composition in regulating the metabolic processes that drive such ecosystem-scale greenhouse gas fluxes. Here we show that changes in vegetation and increasing methane emissions with permafrost thaw are associated with a switch from hydrogenotrophic to partly acetoclastic methanogenesis, resulting in a large shift in the δ13C signature (10–15‰) of emitted methane. We used a natural landscape gradient of permafrost thaw in northern Sweden as a model to investigate the role of microbial communities in regulating methane cycling, and to test whether a knowledge of community dynamics could improve predictions of carbon emissions under loss of permafrost. Abundance of the methanogen Candidatus ‘Methanoflorens stordalenmirensis’ is a key predictor of the shifts in methane isotopes, which in turn predicts the proportions of carbon emitted as methane and as carbon dioxide, an important factor for simulating the climate feedback associated with permafrost thaw in global models. By showing that the abundance of key microbial lineages can be used to predict atmospherically relevant patterns in methane isotopes and the proportion of carbon metabolized to methane during permafrost thaw, we establish a basis for scaling changing microbial communities to ecosystem isotope dynamics. Our findings indicate that microbial ecology may be important in ecosystem-scale responses to global change.


Nature microbiology | 2017

Recovery of nearly 8,000 metagenome-assembled genomes substantially expands the tree of life

Donovan H. Parks; Christian Rinke; Maria Chuvochina; Pierre-Alain Chaumeil; Ben J. Woodcroft; Paul N. Evans; Philip Hugenholtz; Gene W. Tyson

Challenges in cultivating microorganisms have limited the phylogenetic diversity of currently available microbial genomes. This is being addressed by advances in sequencing throughput and computational techniques that allow for the cultivation-independent recovery of genomes from metagenomes. Here, we report the reconstruction of 7,903 bacterial and archaeal genomes from >1,500 public metagenomes. All genomes are estimated to be ≥50% complete and nearly half are ≥90% complete with ≤5% contamination. These genomes increase the phylogenetic diversity of bacterial and archaeal genome trees by >30% and provide the first representatives of 17 bacterial and three archaeal candidate phyla. We also recovered 245 genomes from the Patescibacteria superphylum (also known as the Candidate Phyla Radiation) and find that the relative diversity of this group varies substantially with different protein marker sets. The scale and quality of this data set demonstrate that recovering genomes from metagenomes provides an expedient path forward to exploring microbial dark matter.The recovery of 7,903 bacterial and archaeal metagenome-assembled genomes increases the phylogenetic diversity represented by public genome repositories and provides the first representatives from 20 candidate phyla.


Nature microbiology | 2016

Methylotrophic methanogenesis discovered in the archaeal phylum Verstraetearchaeota

Inka Vanwonterghem; Paul N. Evans; Donovan H. Parks; Paul Jensen; Ben J. Woodcroft; Philip Hugenholtz; Gene W. Tyson

Methanogenesis is the primary biogenic source of methane in the atmosphere and a key contributor to climate change. The long-standing dogma that methanogenesis originated within the Euryarchaeota was recently challenged by the discovery of putative methane-metabolizing genes in members of the Bathyarchaeota, suggesting that methanogenesis may be more phylogenetically widespread than currently appreciated. Here, we present the discovery of divergent methyl-coenzyme M reductase genes in population genomes recovered from anoxic environments with high methane flux that belong to a new archaeal phylum, the Verstraetearchaeota. These archaea encode the genes required for methylotrophic methanogenesis, and may conserve energy using a mechanism similar to that proposed for the obligate H2-dependent methylotrophic Methanomassiliicoccales and recently described Candidatus ‘Methanofastidiosa’. Our findings indicate that we are only beginning to understand methanogen diversity and support an ancient origin for methane metabolism in the Archaea, which is changing our understanding of the global carbon cycle.


Genome Biology | 2012

Organellar proteomics reveals hundreds of novel nuclear proteins in the malaria parasite Plasmodium falciparum

Sophie C. Oehring; Ben J. Woodcroft; Suzette Moes; Johanna Wetzel; Olivier Dietz; Andreas Pulfer; Chaitali Dekiwadia; Pascal Maeser; Christian Flueck; Kathrin Witmer; Nicolas M. B. Brancucci; Igor Niederwieser; Paul Jenoe; Stuart A. Ralph; Till S. Voss

BackgroundThe post-genomic era of malaria research provided unprecedented insights into the biology of Plasmodium parasites. Due to the large evolutionary distance to model eukaryotes, however, we lack a profound understanding of many processes in Plasmodium biology. One example is the cell nucleus, which controls the parasite genome in a development- and cell cycle-specific manner through mostly unknown mechanisms. To study this important organelle in detail, we conducted an integrative analysis of the P. falciparum nuclear proteome.ResultsWe combined high accuracy mass spectrometry and bioinformatic approaches to present for the first time an experimentally determined core nuclear proteome for P. falciparum. Besides a large number of factors implicated in known nuclear processes, one-third of all detected proteins carry no functional annotation, including many phylum- or genus-specific factors. Importantly, extensive experimental validation using 30 transgenic cell lines confirmed the high specificity of this inventory, and revealed distinct nuclear localization patterns of hitherto uncharacterized proteins. Further, our detailed analysis identified novel protein domains potentially implicated in gene transcription pathways, and sheds important new light on nuclear compartments and processes including regulatory complexes, the nucleolus, nuclear pores, and nuclear import pathways.ConclusionOur study provides comprehensive new insight into the biology of the Plasmodium nucleus and will serve as an important platform for dissecting general and parasite-specific nuclear processes in malaria parasites. Moreover, as the first nuclear proteome characterized in any protist organism, it will provide an important resource for studying evolutionary aspects of nuclear biology.


BMC Genomics | 2010

Drug target prediction and prioritization: using orthology to predict essentiality in parasite genomes

Maria A. Doyle; Robin B. Gasser; Ben J. Woodcroft; Ross S. Hall; Stuart A. Ralph

BackgroundNew drug targets are urgently needed for parasites of socio-economic importance. Genes that are essential for parasite survival are highly desirable targets, but information on these genes is lacking, as gene knockouts or knockdowns are difficult to perform in many species of parasites. We examined the applicability of large-scale essentiality information from four model eukaryotes, Caenorhabditis elegans, Drosophila melanogaster, Mus musculus and Saccharomyces cerevisiae, to discover essential genes in each of their genomes. Parasite genes that lack orthologues in their host are desirable as selective targets, so we also examined prediction of essential genes within this subset.ResultsCross-species analyses showed that the evolutionary conservation of genes and the presence of essential orthologues are each strong predictors of essentiality in eukaryotes. Absence of paralogues was also found to be a general predictor of increased relative essentiality. By combining several orthology and essentiality criteria one can select gene sets with up to a five-fold enrichment in essential genes compared with a random selection. We show how quantitative application of such criteria can be used to predict a ranked list of potential drug targets from Ancylostoma caninum and Haemonchus contortus - two blood-feeding strongylid nematodes, for which there are presently limited sequence data but no functional genomic tools.ConclusionsThe present study demonstrates the utility of using orthology information from multiple, diverse eukaryotes to predict essential genes. The data also emphasize the challenge of identifying essential genes among those in a parasite that are absent from its host.


Molecular Ecology | 2009

Widespread transcriptional changes pre-empt the critical pelagic–benthic transition in the vetigastropod Haliotis asinina

Elizabeth A. Williams; Bernard M. Degnan; Helen Gunter; Daniel J. Jackson; Ben J. Woodcroft; Sandie M. Degnan

Larval settlement is a vital transition period for marine invertebrates and can have far‐reaching effects on the ecology and evolution of a species. To explore the molecular mechanisms of this critical process in a nonmodel organism, the abalone Haliotis asinina, we employed cDNA microarrays. By comparing gene expression profiles through mid‐ to late larval development and metamorphosis, we identified 144 genes as candidates for a role in competence and/or metamorphosis. Gene characterization indicates ~60% of these are significantly similar to known genes from other taxa, while ~40% are novel. A high 49.3% of genes are gastropod or abalone specific, but none appears to be Lophotrochozoan specific, even though metamorphosis is thought to have had a separate origin in this group. Differentially expressed larval and postlarval genes can be clustered into five categories that reveal strikingly different temporal transcriptional patterns occurring during this phase of development. Some gene activation is contingent upon exogenous cues and correlates with initiation of settlement. Importantly, there is also extensive gene activity associated with the endogenous attainment of competence, which occurs before, and independent of, the exogenous induction of settlement. Our results show that as the haliotid veliger larva matures, it requires coordinated regulation of temporally different batteries of genes involved in a wide range of physiological and developmental processes associated with benthic colonization. Although the signalling pathways operating at metamorphosis may be conserved across the animal kingdom, it appears they regulate the expression of novel genes specific to abalone, gastropods and molluscs during H. asinina metamorphosis.

Collaboration


Dive into the Ben J. Woodcroft's collaboration.

Top Co-Authors

Avatar

Gene W. Tyson

University of Queensland

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Joel A. Boyd

University of Queensland

View shared research outputs
Top Co-Authors

Avatar

Paul N. Evans

University of Queensland

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge