Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Samuel K. Sheppard is active.

Publication


Featured researches published by Samuel K. Sheppard.


Clinical Infectious Diseases | 2009

Campylobacter genotyping to determine the source of human infection.

Samuel K. Sheppard; John F. Dallas; Norval J. C. Strachan; Marian MacRae; Noel D. McCarthy; Daniel J. Wilson; Fraser J. Gormley; Daniel Falush; Iain D. Ogden; Martin C. J. Maiden; Ken J. Forbes

BACKGROUND Campylobacter species cause a high proportion of bacterial gastroenteritis cases and are a significant burden on health care systems and economies worldwide; however, the relative contributions of the various possible sources of infection in humans are unclear. METHODS National-scale genotyping of Campylobacter species was used to quantify the relative importance of various possible sources of human infection. Multilocus sequence types were determined for 5674 isolates obtained from cases of human campylobacteriosis in Scotland from July 2005 through September 2006 and from 999 Campylobacter species isolates from 3417 contemporaneous samples from potential human infection sources. These data were supplemented with 2420 sequence types from other studies, representing isolates from a variety of sources. The clinical isolates were attributed to possible sources on the basis of their sequence types with use of 2 population genetic models, STRUCTURE and an asymmetric island model. RESULTS The STRUCTURE and the asymmetric island models attributed most clinical isolates to chicken meat (58% and 78% of Campylobacter jejuni and 40% and 56% of Campylobacter coli isolates, respectively), identifying it as the principal source of Campylobacter infection in humans. Both models attributed the majority of the remaining isolates to ruminant sources, with relatively few isolates attributed to wild bird, environment, swine, and turkey sources. CONCLUSIONS National-scale genotyping was a practical and efficient methodology for the quantification of the contributions of different sources to human Campylobacter infection. Combined with the knowledge that retail chicken is routinely contaminated with Campylobacter, these results are consistent with the view that the largest reductions in human campylobacteriosis in industrialized countries will come from interventions that focus on the poultry industry.


Microbiology | 2012

Ribosomal multilocus sequence typing: universal characterization of bacteria from domain to strain

Keith A. Jolley; Carly M. Bliss; Julia S. Bennett; Holly B. Bratcher; Carina Brehony; Frances M. Colles; Helen Wimalarathna; Odile B. Harrison; Samuel K. Sheppard; Alison J. Cody; Martin C. J. Maiden

No single genealogical reconstruction or typing method currently encompasses all levels of bacterial diversity, from domain to strain. We propose ribosomal multilocus sequence typing (rMLST), an approach which indexes variation of the 53 genes encoding the bacterial ribosome protein subunits (rps genes), as a means of integrating microbial genealogy and typing. As with multilocus sequence typing (MLST), rMLST employs curated reference sequences to identify gene variants efficiently and rapidly. The rps loci are ideal targets for a universal characterization scheme as they are: (i) present in all bacteria; (ii) distributed around the chromosome; and (iii) encode proteins which are under stabilizing selection for functional conservation. Collectively, the rps loci exhibit variation that resolves bacteria into groups at all taxonomic and most typing levels, providing significantly more resolution than 16S small subunit rRNA gene phylogenies. A web-accessible expandable database, comprising whole-genome data from more than 1900 bacterial isolates, including 28 draft genomes assembled de novo from the European Bioinformatics Institute (EBI) sequence read archive, has been assembled. The rps gene variation catalogued in this database permits rapid and computationally non-intensive identification of the phylogenetic position of any bacterial sequence at the domain, phylum, class, order, family, genus, species and strain levels. The groupings generated with rMLST data are consistent with current nomenclature schemes and independent of the clustering algorithm used. This approach is applicable to the other domains of life, potentially providing a rational and universal approach to the classification of life that is based on one of its fundamental features, the translation mechanism.


Science | 2008

Convergence of Campylobacter Species: Implications for Bacterial Evolution

Samuel K. Sheppard; Noel D. McCarthy; Daniel Falush; Martin C. J. Maiden

The nature of species boundaries in bacteria remains controversial. In particular, the mechanisms of bacterial speciation and maintenance in the face of frequent genetic exchange are poorly understood. Here, we report patterns of genetic exchange that show two closely related zoonotic pathogenic species, Campylobacter jejuni and Campylobacter coli, are converging as a consequence of recent changes in gene flow. Population expansion into a novel ecological niche generated by human activity is the most probable explanation for the increase in genetic exchange between these species. Bacterial speciation can therefore occur by mechanisms analogous to those seen in metazoans, where genetic diversification and incipient speciation caused by ecological factors have been reported in several genera.


Molecular Ecology | 2005

Detection of secondary predation by PCR analyses of the gut contents of invertebrate generalist predators

Samuel K. Sheppard; James R. Bell; Keith D. Sunderland; John S. Fenlon; D. Skervin; William Oliver Christian Symondson

Predation by generalist predators is difficult to study in the field because of the complex effects of positive and negative interactions within and between predator species and guilds. Predation can be monitored by molecular means, through identification of prey DNA within predators. However, polymerase chain reaction (PCR) amplification of prey DNA from predators cannot discriminate between primary and secondary predation (hyperpredation), in which one predator feeds on another that has recently eaten the target prey. Here we quantify, for the first time, the potential error caused by detection of prey DNA following secondary predation, using an aphid–spider–carabid model. First, the aphid Sitobion avenae was fed to the spider Tenuiphantes tenuis and the carabid Pterostichus melanarius, and the postconsumption detection periods, for prey DNA within predators, were calculated. Aphids were then fed to spiders and the spiders to carabids. Aphid DNA was detected in the predators using primers that amplified 245‐ and 110‐bp fragments of the mitochondrial cytochrome oxidase I gene. Fragment size and predator sex had no significant effect on detection periods. Secondary predation could be detected for up to 8 h, when carabids fed on spiders immediately after the latter had consumed aphids. Beetles tested positive up to 4 h after eating spiders that had digested their aphid prey for 4 h. Clearly, the extreme sensitivity of PCR makes detection of secondary predation more likely, and the only reliable answer in future may be to use PCR to identify, in parallel, instances of intraguild predation.


Proceedings of the National Academy of Sciences of the United States of America | 2013

Genome-wide association study identifies vitamin B5 biosynthesis as a host specificity factor in Campylobacter

Samuel K. Sheppard; Xavier Didelot; Guillaume Méric; Alicia Torralbo; Keith A. Jolley; David J. Kelly; Stephen D. Bentley; Martin Maiden; Julian Parkhill; Daniel Falush

Genome-wide association studies have the potential to identify causal genetic factors underlying important phenotypes but have rarely been performed in bacteria. We present an association mapping method that takes into account the clonal population structure of bacteria and is applicable to both core and accessory genome variation. Campylobacter is a common cause of human gastroenteritis as a consequence of its proliferation in multiple farm animal species and its transmission via contaminated meat and poultry. We applied our association mapping method to identify the factors responsible for adaptation to cattle and chickens among 192 Campylobacter isolates from these and other host sources. Phylogenetic analysis implied frequent host switching but also showed that some lineages were strongly associated with particular hosts. A seven-gene region with a host association signal was found. Genes in this region were almost universally present in cattle but were frequently absent in isolates from chickens and wild birds. Three of the seven genes encoded vitamin B5 biosynthesis. We found that isolates from cattle were better able to grow in vitamin B5-depleted media and propose that this difference may be an adaptation to host diet.


International Journal of Food Microbiology | 2009

Campylobacter genotypes from food animals, environmental sources and clinical disease in Scotland 2005/6

Samuel K. Sheppard; John F. Dallas; Marion MacRae; Noel D. McCarthy; E. L. Sproston; Fraser J. Gormley; Norval J. C. Strachan; Iain D. Ogden; Martin C. J. Maiden; Ken J. Forbes

A nationwide multi-locus sequence typing (MLST) survey was implemented to analyze patterns of host association among Campylobacter jejuni and Campylobacter coli isolates from clinical disease in Scotland (July 2005-September 2006), food animals (chickens, cattle, sheep, pigs and turkey), non-food animals (wild birds) and the environment. Sequence types (STs) were determined for 5247 clinical isolates and 999 from potential disease sources (augmented with 2420 published STs). Certain STs were over represented among particular sample sets/host groups. These host-associated STs were identified for all sample groups in both Campylobacter species and host associated clonal complexes (groups of related STs) were characterized for C. jejuni. Some genealogical lineages were present in both human disease and food animal samples. This provided evidence for the relative importance of different infection routes/food animal sources in human disease. These results show robust associations of particular genotypes with potential infection sources supporting the contention that contaminated poultry is a major source of human disease.


Molecular Ecology | 2005

The significance of facultative scavenging in generalist predator nutrition: detecting decayed prey in the guts of predators using PCR

Pavel Foltan; Samuel K. Sheppard; Martin Konvicka; William Oliver Christian Symondson

Gut‐content analyses using molecular techniques are an effective approach to quantifying predator–prey interactions. Predation is often assumed but scavenging is an equally likely route by which animal DNA enters the gut of a predator/scavenger. We used PCR (polymerase chain reaction) to detect scavenged material in predator gut homogenates. The rates at which DNA in decaying slugs (Mollusca: Pulmonata) and aphids (Homoptera: Aphididae) became undetectable were estimated. The detectability of DNA from both carrion types in the guts of the generalist predator Pterostichus melanarius (Coleoptera: Carabidae) was then determined. The effects of carrion age and weight, as well as beetle sex, on detection periods, were quantified. Laboratory trials measured prey preference of beetles between live and decaying prey. Further experiments measured, for the first time, feeding by P. melanarius on dead slugs and aphids directly in the field. In both field and laboratory, P. melanarius preferentially fed on dead prey if available, but preference changed as the prey became increasingly decayed. Disappearance rates for slug carrion in wheat fields and grasslands were estimated and P. melanarius was identified as the main scavenger. Comparison of the retention time for dead slugs in the field, with the detection period for decaying slug material in the guts of the predators, showed that PCR‐based techniques are not able to distinguish between predated and scavenged food items. This could potentially lead to overestimation of the impact of predation on slugs (and other prey) by carabids. Possible implications of facultative scavenging by invertebrate predators for biocontrol and food‐web research are discussed.


The Journal of Infectious Diseases | 2009

Attribution of Campylobacter Infections in Northeast Scotland to Specific Sources by Use of Multilocus Sequence Typing

Norval J. C. Strachan; Fraser J. Gormley; Ovidiu Rotariu; Iain D. Ogden; Gordon Miller; Geoff Dunn; Samuel K. Sheppard; John F. Dallas; Thomas M.S. Reid; Helen Howie; Martin C. J. Maiden; Ken J. Forbes

We show that a higher incidence of campylobacteriosis is found in young children (age, <5 years) living in rural, compared with urban, areas. Association of this difference with particular animal sources was evaluated using multilocus sequence typing. This evaluation was achieved by comparing Campylobacter isolates originating from these children, retail poultry, and a range of animal sources by use of source attribution and phylogenetic analysis methods. The results indicate that chicken is a major source of infection in young urban children, although not in their rural counterparts, for which ruminant and other avian sources are more important.


Molecular Ecology | 2006

Molecular detection of predation by soil micro-arthropods on nematodes.

Daniel S. Read; Samuel K. Sheppard; Michael William Bruford; D. M. Glen; William Oliver Christian Symondson

The relative importance of the factors driving change in the population dynamics of nematodes in the soil is almost completely unknown. Top‐down control by micro‐arthropod predators may have a significant impact on nematode population dynamics. We report experiments showing that mites and Collembola were capable of reducing nematode numbers in the laboratory and were feeding on a targeted nematode species in the field. A PCR‐based approach was developed for the detection of predation on three species of slug‐ and insect‐pathogenic nematodes: Phasmarhabditis hermaphrodita, Heterorhabditis megidis and Steinernema feltiae. The collembolan Folsomia candida and the mesostigmatid mite Stratiolaelaps miles were employed as model predators to calibrate post‐ingestion prey DNA detection times. Fragments of cytochrome oxidase I (COI) mtDNA were sequenced and species‐specific primers were designed, amplifying 154‐, 154‐ and 203‐bp fragments for each of the nematode species. Detection times for nematode DNA within the guts of Collembola were longer than in mites, with half‐lives (50% of samples testing positive) of 08.75 h and 05.03 h, respectively. F. candida significantly reduced numbers of the nematode H. megidis, with rates of predation of ∼0.4 nematode infective juveniles per collembolan per hour over 10 h. Four taxa of field‐caught micro‐arthropod that had been exposed to the nematode P. hermaphrodita for a period of 12 h were analysed and significant numbers of three taxa tested positive. This is the first application of PCR techniques for the study of nematophagy and the first time these techniques have been used to measure predation on nematodes in the field.


Environmental Microbiology | 2008

Campylobacter infection of broiler chickens in a free-range environment

Frances M. Colles; Tracey A. Jones; Noel D. McCarthy; Samuel K. Sheppard; Alison J. Cody; Kate E. Dingle; Marian Stamp Dawkins; Martin C. J. Maiden

Campylobacter jejuni is the most common cause of bacterial gastroenteritis worldwide, with contaminated chicken meat considered to represent a major source of human infection. Biosecurity measures can reduce C. jejuni shedding rates of housed chickens, but the increasing popularity of free-range and organic meat raises the question of whether the welfare benefits of extensive production are compatible with food safety. The widespread assumption that the free-range environment contaminates extensively reared chickens has not been rigorously tested. A year-long survey of 64 free-range broiler flocks reared on two sites in Oxfordshire, UK, combining high-resolution genotyping with behavioural and environmental observations revealed: (i) no evidence of colonization of succeeding flocks by the C. jejuni genotypes shed by preceding flocks, (ii) a high degree of similarity between C. jejuni genotypes from both farm sites, (iii) no association of ranging behaviour with likelihood of Campylobacter shedding, and (iv) higher genetic differentiation between C. jejuni populations from chickens and wild birds on the same farm than between the chicken samples, human disease isolates from the same region and national samples of C. jejuni from chicken meat.

Collaboration


Dive into the Samuel K. Sheppard's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge