Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Guillaume Méric is active.

Publication


Featured researches published by Guillaume Méric.


Proceedings of the National Academy of Sciences of the United States of America | 2013

Genome-wide association study identifies vitamin B5 biosynthesis as a host specificity factor in Campylobacter

Samuel K. Sheppard; Xavier Didelot; Guillaume Méric; Alicia Torralbo; Keith A. Jolley; David J. Kelly; Stephen D. Bentley; Martin Maiden; Julian Parkhill; Daniel Falush

Genome-wide association studies have the potential to identify causal genetic factors underlying important phenotypes but have rarely been performed in bacteria. We present an association mapping method that takes into account the clonal population structure of bacteria and is applicable to both core and accessory genome variation. Campylobacter is a common cause of human gastroenteritis as a consequence of its proliferation in multiple farm animal species and its transmission via contaminated meat and poultry. We applied our association mapping method to identify the factors responsible for adaptation to cattle and chickens among 192 Campylobacter isolates from these and other host sources. Phylogenetic analysis implied frequent host switching but also showed that some lineages were strongly associated with particular hosts. A seven-gene region with a host association signal was found. Genes in this region were almost universally present in cattle but were frequently absent in isolates from chickens and wild birds. Three of the seven genes encoded vitamin B5 biosynthesis. We found that isolates from cattle were better able to grow in vitamin B5-depleted media and propose that this difference may be an adaptation to host diet.


BMC Genomics | 2012

Impact of homologous and non-homologous recombination in the genomic evolution of Escherichia coli.

Xavier Didelot; Guillaume Méric; Daniel Falush; Aaron E. Darling

BackgroundEscherichia coli is an important species of bacteria that can live as a harmless inhabitant of the guts of many animals, as a pathogen causing life-threatening conditions or freely in the non-host environment. This diversity of lifestyles has made it a particular focus of interest for studies of genetic variation, mainly with the aim to understand how a commensal can become a deadly pathogen. Many whole genomes of E. coli have been fully sequenced in the past few years, which offer helpful data to help understand how this important species evolved.ResultsWe compared 27 whole genomes encompassing four phylogroups of Escherichia coli (A, B1, B2 and E). From the core-genome we established the clonal relationships between the isolates as well as the role played by homologous recombination during their evolution from a common ancestor. We found strong evidence for sexual isolation between three lineages (A+B1, B2, E), which could be explained by the ecological structuring of E. coli and may represent on-going speciation. We identified three hotspots of homologous recombination, one of which had not been previously described and contains the aroC gene, involved in the essential shikimate metabolic pathway. We also described the role played by non-homologous recombination in the pan-genome, and showed that this process was highly heterogeneous. Our analyses revealed in particular that the genomes of three enterohaemorrhagic (EHEC) strains within phylogroup B1 have converged from originally separate backgrounds as a result of both homologous and non-homologous recombination.ConclusionsRecombination is an important force shaping the genomic evolution and diversification of E. coli, both by replacing fragments of genes with an homologous sequence and also by introducing new genes. In this study, several non-random patterns of these events were identified which correlated with important changes in the lifestyle of the bacteria, and therefore provide additional evidence to explain the relationship between genomic variation and ecological adaptation.


Molecular Ecology | 2013

Progressive genome-wide introgression in agricultural Campylobacter coli

Samuel K. Sheppard; Xavier Didelot; Keith A. Jolley; Aaron E. Darling; Ben Pascoe; Guillaume Méric; David J. Kelly; Alison J. Cody; Frances M. Colles; Norval J. C. Strachan; Iain D. Ogden; Ken J. Forbes; N. P. French; Philip E. Carter; William G. Miller; Noel D. McCarthy; Robert J. Owen; Eva Litrup; Michael Egholm; Jason Affourtit; Stephen D. Bentley; Julian Parkhill; Martin Maiden; Daniel Falush

Hybridization between distantly related organisms can facilitate rapid adaptation to novel environments, but is potentially constrained by epistatic fitness interactions among cell components. The zoonotic pathogens Campylobacter coli and C. jejuni differ from each other by around 15% at the nucleotide level, corresponding to an average of nearly 40 amino acids per protein‐coding gene. Using whole genome sequencing, we show that a single C. coli lineage, which has successfully colonized an agricultural niche, has been progressively accumulating C. jejuni DNA. Members of this lineage belong to two groups, the ST‐828 and ST‐1150 clonal complexes. The ST‐1150 complex is less frequently isolated and has undergone a substantially greater amount of introgression leading to replacement of up to 23% of the C. coli core genome as well as import of novel DNA. By contrast, the more commonly isolated ST‐828 complex bacteria have 10–11% introgressed DNA, and C. jejuni and nonagricultural C. coli lineages each have <2%. Thus, the C. coli that colonize agriculture, and consequently cause most human disease, have hybrid origin, but this cross‐species exchange has so far not had a substantial impact on the gene pools of either C. jejuni or nonagricultural C. coli. These findings also indicate remarkable interchangeability of basic cellular machinery after a prolonged period of independent evolution.


PLOS ONE | 2014

A reference pan-genome approach to comparative bacterial genomics: identification of novel epidemiological markers in pathogenic Campylobacter.

Guillaume Méric; Koji Yahara; Leonardos Mageiros; Ben Pascoe; Martin C. J. Maiden; Keith A. Jolley; Samuel K. Sheppard

The increasing availability of hundreds of whole bacterial genomes provides opportunities for enhanced understanding of the genes and alleles responsible for clinically important phenotypes and how they evolved. However, it is a significant challenge to develop easy-to-use and scalable methods for characterizing these large and complex data and relating it to disease epidemiology. Existing approaches typically focus on either homologous sequence variation in genes that are shared by all isolates, or non-homologous sequence variation - focusing on genes that are differentially present in the population. Here we present a comparative genomics approach that simultaneously approximates core and accessory genome variation in pathogen populations and apply it to pathogenic species in the genus Campylobacter. A total of 7 published Campylobacter jejuni and Campylobacter coli genomes were selected to represent diversity across these species, and a list of all loci that were present at least once was compiled. After filtering duplicates a 7-isolate reference pan-genome, of 3,933 loci, was defined. A core genome of 1,035 genes was ubiquitous in the sample accounting for 59% of the genes in each isolate (average genome size of 1.68 Mb). The accessory genome contained 2,792 genes. A Campylobacter population sample of 192 genomes was screened for the presence of reference pan-genome loci with gene presence defined as a BLAST match of ≥70% identity over ≥50% of the locus length - aligned using MUSCLE on a gene-by-gene basis. A total of 21 genes were present only in C. coli and 27 only in C. jejuni, providing information about functional differences associated with species and novel epidemiological markers for population genomic analyses. Homologs of these genes were found in several of the genomes used to define the pan-genome and, therefore, would not have been identified using a single reference strain approach.


Molecular Ecology | 2014

Cryptic ecology among host generalist Campylobacter jejuni in domestic animals

Samuel K. Sheppard; Lu Cheng; Guillaume Méric; Caroline P. A. de Haan; Ann-Katrin Llarena; Pekka Marttinen; Ana Vidal; A.M. Ridley; F. A. Clifton-Hadley; Thomas Richard Connor; Norval J. C. Strachan; Ken J. Forbes; Frances M. Colles; Keith A. Jolley; Stephen D. Bentley; Martin C. J. Maiden; Marja-Liisa Hänninen; Julian Parkhill; William P. Hanage; Jukka Corander

Homologous recombination between bacterial strains is theoretically capable of preventing the separation of daughter clusters, and producing cohesive clouds of genotypes in sequence space. However, numerous barriers to recombination are known. Barriers may be essential such as adaptive incompatibility, or ecological, which is associated with the opportunities for recombination in the natural habitat. Campylobacter jejuni is a gut colonizer of numerous animal species and a major human enteric pathogen. We demonstrate that the two major generalist lineages of C. jejuni do not show evidence of recombination with each other in nature, despite having a high degree of host niche overlap and recombining extensively with specialist lineages. However, transformation experiments show that the generalist lineages readily recombine with one another in vitro. This suggests ecological rather than essential barriers to recombination, caused by a cryptic niche structure within the hosts.


Environmental Microbiology | 2013

Phylogenetic distribution of traits associated with plant colonization in Escherichia coli

Guillaume Méric; E. Katherine Kemsley; Daniel Falush; Elizabeth J. Saggers; Sacha Lucchini

Plants are increasingly considered as secondary reservoirs for commensal and pathogenic Escherichia coli strains, but the ecological and functional factors involved in this association are not clear. To address this question, we undertook a comparative approach combining phenotypic and phylogenetic analyses of E. coli isolates from crops and mammalian hosts. Phenotypic profiling revealed significant differences according to the source of isolation. Notably, isolates from plants displayed higher biofilm and extracellular matrix production and higher frequency of utilization of sucrose and the aromatic compound p-hydroxyphenylacetic acid. However, when compared with mammalian-associated strains, they reached lower growth yields on many C-sources commonly used by E. coli. Strikingly, we observed a strong association between phenotypes and E. coli phylogenetic groups. Strains belonging to phylogroup B1 were more likely to harbour traits indicative of a higher ability to colonize plants, whereas phylogroup A and B2 isolates displayed phenotypes linked to an animal-associated lifestyle. This work provides clear indications that E. coli phylogroups are specifically affected by niche-specific selective pressures, and provides an explanation on why E. coli population structures vary in natural environments, implying that different lineages in E. coli have substantially different transmission ecology.


Genome Biology and Evolution | 2015

Ecological Overlap and Horizontal Gene Transfer in Staphylococcus aureus and Staphylococcus epidermidis

Guillaume Méric; Maria Miragaia; Mark de Been; Koji Yahara; Ben Pascoe; Leonardos Mageiros; Jane Mikhail; Llinos G. Harris; Thomas S. Wilkinson; Joana Rolo; Sarah Lamble; James E. Bray; Keith A. Jolley; William P. Hanage; Rory Bowden; Martin C. J. Maiden; Dietrich Mack; Hermínia de Lencastre; Edward J. Feil; Jukka Corander; Samuel K. Sheppard

The opportunistic pathogens Staphylococcus aureus and Staphylococcus epidermidis represent major causes of severe nosocomial infection, and are associated with high levels of mortality and morbidity worldwide. These species are both common commensals on the human skin and in the nasal pharynx, but are genetically distinct, differing at 24% average nucleotide divergence in 1,478 core genes. To better understand the genome dynamics of these ecologically similar staphylococcal species, we carried out a comparative analysis of 324 S. aureus and S. epidermidis genomes, including 83 novel S. epidermidis sequences. A reference pan-genome approach and whole genome multilocus-sequence typing revealed that around half of the genome was shared between the species. Based on a BratNextGen analysis, homologous recombination was found to have impacted on 40% of the core genes in S. epidermidis, but on only 24% of the core genes in S. aureus. Homologous recombination between the species is rare, with a maximum of nine gene alleles shared between any two S. epidermidis and S. aureus isolates. In contrast, there was considerable interspecies admixture of mobile elements, in particular genes associated with the SaPIn1 pathogenicity island, metal detoxification, and the methicillin-resistance island SCCmec. Our data and analysis provide a context for considering the nature of recombinational boundaries between S. aureus and S. epidermidis and, the selective forces that influence realized recombination between these species.


The ISME Journal | 2016

Rapid host switching in generalist Campylobacter strains erodes the signal for tracing human infections

Bethany Lorna Dearlove; Alison J. Cody; Ben Pascoe; Guillaume Méric; Daniel J. Wilson; Samuel K. Sheppard

Campylobacter jejuni and Campylobacter coli are the biggest causes of bacterial gastroenteritis in the developed world, with human infections typically arising from zoonotic transmission associated with infected meat. Because Campylobacter is not thought to survive well outside the gut, host-associated populations are genetically isolated to varying degrees. Therefore, the likely origin of most strains can be determined by host-associated variation in the genome. This is instructive for characterizing the source of human infection. However, some common strains, notably isolates belonging to the ST-21, ST-45 and ST-828 clonal complexes, appear to have broad host ranges, hindering source attribution. Here whole-genome sequencing has the potential to reveal fine-scale genetic structure associated with host specificity. We found that rates of zoonotic transmission among animal host species in these clonal complexes were so high that the signal of host association is all but obliterated, estimating one zoonotic transmission event every 1.6, 1.8 and 12 years in the ST-21, ST-45 and ST828 complexes, respectively. We attributed 89% of clinical cases to a chicken source, 10% to cattle and 1% to pig. Our results reveal that common strains of C. jejuni and C. coli infectious to humans are adapted to a generalist lifestyle, permitting rapid transmission between different hosts. Furthermore, they show that the weak signal of host association within these complexes presents a challenge for pinpointing the source of clinical infections, underlining the view that whole-genome sequencing, powerful though it is, cannot substitute for intensive sampling of suspected transmission reservoirs.


Environmental Microbiology | 2015

Enhanced biofilm formation and multi-host transmission evolve from divergent genetic backgrounds in Campylobacter jejuni

Ben Pascoe; Guillaume Méric; Susan Murray; Koji Yahara; Leonardos Mageiros; Ryan Bowen; Nathan H. Jones; Rose Jeeves; Hilary M. Lappin-Scott; Hiroshi Asakura; Samuel K. Sheppard

Summary Multicellular biofilms are an ancient bacterial adaptation that offers a protective environment for survival in hostile habitats. In microaerophilic organisms such as C ampylobacter, biofilms play a key role in transmission to humans as the bacteria are exposed to atmospheric oxygen concentrations when leaving the reservoir host gut. Genetic determinants of biofilm formation differ between species, but little is known about how strains of the same species achieve the biofilm phenotype with different genetic backgrounds. Our approach combines genome‐wide association studies with traditional microbiology techniques to investigate the genetic basis of biofilm formation in 102 C ampylobacter jejuni isolates. We quantified biofilm formation among the isolates and identified hotspots of genetic variation in homologous sequences that correspond to variation in biofilm phenotypes. Thirteen genes demonstrated a statistically robust association including those involved in adhesion, motility, glycosylation, capsule production and oxidative stress. The genes associated with biofilm formation were different in the host generalist ST‐21 and ST‐45 clonal complexes, which are frequently isolated from multiple host species and clinical samples. This suggests the evolution of enhanced biofilm from different genetic backgrounds and a possible role in colonization of multiple hosts and transmission to humans.


Environmental Microbiology | 2017

Genome-wide association of functional traits linked with Campylobacter jejuni survival from farm to fork

Koji Yahara; Guillaume Méric; Aidan J. Taylor; Stefan P. W. de Vries; Susan Murray; Ben Pascoe; Leonardos Mageiros; Alicia Torralbo; Ana Vidal; A.M. Ridley; Sho Komukai; Helen Wimalarathna; Alison J. Cody; Frances M. Colles; Noel D. McCarthy; David Harris; James E. Bray; Keith A. Jolley; Martin C. J. Maiden; Stephen D. Bentley; Julian Parkhill; Christopher D. Bayliss; Andrew J. Grant; Duncan J. Maskell; Xavier Didelot; David J. Kelly; Samuel K. Sheppard

Campylobacter jejuni is a major cause of bacterial gastroenteritis worldwide, primarily associated with the consumption of contaminated poultry. C. jejuni lineages vary in host range and prevalence in human infection, suggesting differences in survival throughout the poultry processing chain. From 7343 MLST-characterised isolates, we sequenced 600 C. jejuni and C. coli isolates from various stages of poultry processing and clinical cases. A genome-wide association study (GWAS) in C. jejuni ST-21 and ST-45 complexes identified genetic elements over-represented in clinical isolates that increased in frequency throughout the poultry processing chain. Disease-associated SNPs were distinct in these complexes, sometimes organised in haplotype blocks. The function of genes containing associated elements was investigated, demonstrating roles for cj1377c in formate metabolism, nuoK in aerobic survival and oxidative respiration, and cj1368-70 in nucleotide salvage. This work demonstrates the utility of GWAS for investigating transmission in natural zoonotic pathogen populations and provides evidence that major C. jejuni lineages have distinct genotypes associated with survival, within the host specific niche, from farm to fork.

Collaboration


Dive into the Guillaume Méric's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Koji Yahara

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Julian Parkhill

Wellcome Trust Sanger Institute

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge