Benedikt Brommer
Charité
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Benedikt Brommer.
Brain | 2012
Vieri Failli; Marcel A. Kopp; Christine Gericke; Peter Martus; Susann Klingbeil; Benedikt Brommer; Ines Laginha; Yuying Chen; Michael J. DeVivo; Ulrich Dirnagl; Jan M. Schwab
Infections are a common threat to patients after spinal cord injury. Furthermore, infections might propagate neuronal death, and consequently contribute to the restriction of neurological recovery. We investigated the association of infections (i.e. pneumonia and/or postoperative wound infections) with functional neurological outcome after acute severe traumatic spinal cord injury. We screened data sets of 24 762 patients enrolled in a prospective cohort study (National Spinal Cord Injury Database, Birmingham, AL, USA). Patients were assessed according to the ASIA classification. ASIA impairment scale-classified A and B patients recruited within 24 h post-trauma (n = 1436) were selected as being a major recruitment population for interventional trials. Patients with documented pneumonia and/or postoperative wound infections (n = 581) were compared with control subjects (non-documented infections, n = 855). The functional neurological outcome parameters (i) upward ASIA impairment scale conversions; (ii) gain of ASIA motor scores; and (iii) gain of motor and sensory levels were consecutively analysed over time up to 1 year after spinal cord injury. The group with pneumonia and/or postoperative wound infections revealed less ASIA impairment scale upward conversions after 1 year than the control group (ASIA impairment scale A: 17.2 versus 23.9%, P = 0.03; ASIA impairment scale B: 57.1 versus 74.7%, P = 0.009). ASIA motor score gain [median (interquartile range)] was lower in patients with infections [ASIA impairment scale A: 8 (4-12) versus 10 (5-17), P = 0.01; ASIA impairment scale B: 19.5 (8-53.5) versus 42 (20.5-64), P = 0.03)]. Analysis of acquired motor/sensory levels supported these findings. In ASIA impairment scale A patients, the gain in motor levels (21.7 versus 33.3%, P = 0.04) and sensory levels (24.4 versus 38 of 102, 37.3%, P = 0.03) was significantly lower in the group with pneumonia and/or postoperative wound infections than in the control group. Multiple regression analysis identified pneumonia and/or postoperative wound infections as independent risk factors for impaired ASIA impairment scale upward conversion (odds ratio: 1.89, 95% confidence interval: 1.36-2.63, P < 0.0005) or lower gain in ASIA motor score (regression coefficient: -8.21, 95% confidence interval: -12.29 to -4.14, P < 0.0005). Infections associated with spinal cord injury, such as pneumonia and/or postoperative wound infections, qualify as independent risk factors for poor neurological outcome after motor complete spinal cord injury. Infections constitute a clinically relevant target for protecting the limited endogenous functional regeneration capacity. Upcoming interventional trials might gain in efficacy with improved patient stratification and might benefit from complementary protection of the intrinsic recovery potential after spinal cord injury.
Brain Pathology | 2011
Harald Prüss; Marcel A. Kopp; Benedikt Brommer; Nicole Gatzemeier; Ines Laginha; Ulrich Dirnagl; Jan M. Schwab
Inflammatory resolution is an active, highly regulated process already encoded at the onset of inflammation and required to prevent the transition into chronic inflammation associated with spreading of tissue injury and exacerbated scarring. We introduce objective, quantitative measurements [resolution indices (Ri) and resolution plateau (RP)] to characterize inflammatory resolution and to determine the persistence (“dwell time”) of differential leukocyte subpopulations at the lesion site after acute experimental spinal cord injury (SCI). The cell type‐specific resolution interval Ri (time between maximum cell numbers and the point when they are reduced to 50%) ranges from 1.2 days for neutrophils, 1.5 days for T lymphocytes, to 55 days for microglia/macrophages. As the resolution interval neglects exiting cell trafficking in the later period of resolution (49%–0% of lesional cells), we introduced the RP, a marker for the persisting, chronified leukocyte subsets, which are likely to participate in late degeneration and non‐resolving inflammation. Here, we identify the acute inflammatory response in central nervous system (CNS) lesions as partly non self‐limiting. Both extended resolution intervals (reduced leukocyte clearance) and elevated plateaus (permanent lesional cell numbers) provide quantitative measures to characterize residual, sustained inflammation and define cognate timeframes of impaired resolution after acute SCI.
Proceedings of the National Academy of Sciences of the United States of America | 2011
Valbona Mirakaj; Sebastian Brown; Stefanie Laucher; Carolin Steinl; Gerd Klein; David Köhler; Thomas Skutella; Christian Meisel; Benedikt Brommer; Peter Rosenberger; Jan M. Schwab
Directed cell migration is a prerequisite not only for the development of the central nervous system, but also for topically restricted, appropriate immune responses. This is crucial for host defense and immune surveillance. Attracting environmental cues guiding leukocyte cell traffic are likely to be complemented by repulsive cues, which actively abolish cell migration. One such a paradigm exists in the developing nervous system, where neuronal migration and axonal path finding is balanced by chemoattractive and chemorepulsive cues, such as the neuronal repulsive guidance molecule-A (RGM-A). As expressed at the inflammatory site, the role of RGM-A within the immune response remains unclear. Here we report that RGM-A (i) is expressed by epithelium and leukocytes (granulocytes, monocytes, and T/B lymphocytes); (ii) inhibits leukocyte migration by contact repulsion and chemorepulsion, depending on dosage, through its receptor neogenin; and (iii) suppresses the inflammatory response in a model of zymosan-A–induced peritonitis. Systemic application of RGM-A attenuates the humoral proinflammatory response (TNF-α, IL-6, and macrophage inflammatory protein 1α), infiltration of inflammatory cell traffic, and edema formation. In contrast, the demonstrated anti-inflammatory effect of RGM-A is absent in mice homozygous for a gene trap mutation in the neo1 locus (encoding neogenin). Thus, our results suggest that RGM-A is a unique endogenous inhibitor of leukocyte chemotaxis that limits inflammatory leukocyte traffic and creates opportunities to better understand and treat pathologies caused by exacerbated or misdirected inflammatory responses.
Cell and Tissue Research | 2012
Marcel A. Kopp; Thomas Liebscher; Andreas Niedeggen; Stefan Laufer; Benedikt Brommer; Gerhard Jan Jungehülsing; Stephen M. Strittmatter; Ulrich Dirnagl; Jan M. Schwab
Limited axonal plasticity within the central nervous system (CNS) is a major restriction for functional recovery after CNS injury. The small GTPase RhoA is a key molecule of the converging downstream cascade that leads to the inhibition of axonal re-growth. The Rho-pathway integrates growth inhibitory signals derived from extracellular cues, such as chondroitin sulfate proteoglycans, Nogo-A, myelin-associated glycoprotein, oligodendrocyte-myelin glycoprotein, Ephrins and repulsive guidance molecule-A, into the damaged axon. Consequently, the activation of RhoA results in growth cone collapse and finally outgrowth failure. In turn, the inhibition of RhoA-activation blinds the injured axon to its growth inhibitory environment resulting in enhanced axonal sprouting and plasticity. This has been demonstrated in various CNS-injury models for direct RhoA-inhibition and for downstream/upstream blockade of the RhoA-associated pathway. In addition, RhoA-inhibition reduces apoptotic cell death and secondary damage and improves locomotor recovery in clinically relevant models after experimental spinal cord injury (SCI). Unexpectedly, a subset of “small molecules” from the group of non-steroid anti-inflammatory drugs, particularly the FDA-approved ibuprofen, has recently been identified as (1) inhibiting RhoA-activation, (2) enhancing axonal sprouting/regeneration, (3) protecting “tissue at risk” (neuroprotection) and (4) improving motor recovery confined to realistic therapeutical time-frames in clinically relevant SCI models. Here, we survey the effect of small-molecule-induced RhoA-inhibition on axonal plasticity and neurofunctional outcome in CNS injury paradigms. Furthermore, we discuss the body of preclinical evidence for a possible clinical translation with a focus on ibuprofen and illustrate putative risks and benefits for the treatment of acute SCI.
PLOS Biology | 2016
Ralf Watzlawick; Julian Rind; Emily S. Sena; Benedikt Brommer; Tian Zhang; Marcel A. Kopp; Ulrich Dirnagl; Malcolm R. Macleod; David W. Howells; Jan M. Schwab
Olfactory ensheathing cell (OEC) transplantation is a candidate cellular treatment approach for human spinal cord injury (SCI) due to their unique regenerative potential and autologous origin. The objective of this study was, through a meta-epidemiologic approach, (i) to assess the efficacy of OEC transplantation on locomotor recovery after traumatic experimental SCI and (ii) to estimate the likelihood of reporting bias and/or missing data. A study protocol was finalized before data collection. Embedded into a systematic review and meta-analysis, we conducted a literature research of databases including PubMed, EMBASE, and ISI Web of Science from 1949/01 to 2014/10 with no language restrictions, screened by two independent investigators. Studies were included if they assessed neurobehavioral improvement after traumatic experimental SCI, administrated no combined interventions, and reported the number of animals in the treatment and control group. Individual effect sizes were pooled using a random effects model. Details regarding the study design were extracted and impact of these on locomotor outcome was assessed by meta-regression. Missing data (reporting bias) was determined by Egger regression and Funnel-plotting. The primary study outcome assessed was improvement in locomotor function at the final time point of measurement. We included 49 studies (62 experiments, 1,164 animals) in the final analysis. The overall improvement in locomotor function after OEC transplantation, measured using the Basso, Beattie, and Bresnahan (BBB) score, was 20.3% (95% CI 17.8–29.5). One missing study was imputed by trim and fill analysis, suggesting only slight publication bias and reducing the overall effect to a 19.2% improvement of locomotor activity. Dose-response ratio supports neurobiological plausibility. Studies were assessed using a 9-point item quality score, resulting in a median score of 5 (interquartile range [IQR] 3–5). In conclusion, OEC transplantation exerts considerable beneficial effects on neurobehavioral recovery after traumatic experimental SCI. Publication bias was minimal and affirms the translational potential of efficacy, but safety cannot be adequately assessed. The data justify OECs as a cellular substrate to develop and optimize minimally invasive and safe cellular transplantation paradigms for the lesioned spinal cord embedded into state-of-the-art Phase I/II clinical trial design studies for human SCI.
JAMA Neurology | 2014
Ralf Watzlawick; Emily S. Sena; Ulrich Dirnagl; Benedikt Brommer; Marcel A. Kopp; Malcolm R. Macleod; David W. Howells; Jan M. Schwab
IMPORTANCE Blockade of small GTPase-RhoA signaling pathway is considered a candidate translational strategy to improve functional outcome after spinal cord injury (SCI) in humans. Pooling preclinical evidence by orthodox meta-analysis is confounded by missing data (publication bias). OBJECTIVE To conduct a systematic review and meta-analysis of RhoA/Rho-associated coiled-coil containing protein kinase (ROCK) blocking approaches to (1) analyze the impact of bias that may lead to inflated effect sizes and (2) determine the normalized effect size of functional locomotor recovery after experimental thoracic SCI. EVIDENCE REVIEW We conducted a systematic search of PubMed, EMBASE, and Web of Science and hand searched related references. Studies were selected if they reported the effect of RhoA/ROCK inhibitors (C3-exoenzmye, fasudil, Y-27632, ibuprofen, siRhoA, and p21) in experimental spinal cord hemisection, contusion, or transection on locomotor recovery measured by the Basso, Beattie, and Bresnahan score or the Basso Mouse Scale for Locomotion. Two investigators independently assessed the identified studies. Details of individual study characteristics from each publication were extracted and effect sizes pooled using a random effects model. We assessed risk for bias using a 9-point-item quality checklist and calculated publication bias with Egger regression and the trim and fill method. A stratified meta-analysis was used to assess the impact of study characteristics on locomotor recovery. FINDINGS Thirty studies (725 animals) were identified. RhoA/ROCK inhibition was found to improve locomotor outcome by 21% (95% CI, 16.0-26.6). Assessment of publication bias by the trim and fill method suggested that 30% of experiments remain unpublished. Inclusion of these theoretical missing studies suggested a 27% overestimation of efficacy, reducing the overall efficacy to a 15% improvement in locomotor recovery. Low study quality was associated with larger estimates of neurobehavioral outcome. CONCLUSIONS AND RELEVANCE Taking into account publication bias, RhoA/ROCK inhibition improves functional outcome in experimental SCI by 15%. This is a plausible strategy for the pharmacological augmentation of neurorehabilitation after human SCI. These findings support the necessity of a systematic analysis to identify preclinical bias before embarking on a clinical trial.
PLOS ONE | 2013
Harald Prüss; Berit Rosche; Aaron B. Sullivan; Benedikt Brommer; Oliver Wengert; Karsten Gronert; Jan M. Schwab
Background The severity and longevity of inflammation is controlled by endogenous counter-regulatory signals. Among them are long-chain polyunsaturated fatty acid (PUFA)-derived lipid mediators, which promote the resolution of inflammation, an active process for returning to tissue homeostasis. Objective To determine whether endogenous production of lipid-derived resolution agonists is regulated differentially in patients with highly active and less active multiple sclerosis (MS). Design Matched-pairs study in University hospital Neurology department. Patients Based on clinical (relapse frequency) and paraclinical (MRI lesions, contrast enhancement) criteria, 10 pairs of age- and sex-matched patients with relapsing-remitting MS were assigned either to a group with highly active or less active MS. Lipid mediators were quantified in serum and cerebrospinal fluid using LC-MS/MS-based lipidomics. Results Levels of the key arachidonic (ω-6) and docosahexaenoic acid (ω-6)-derived mediators prostaglandins (PG), leukotrienes, hydroxyeicosatetraenoic acids (HETE) and resolution agonists lipoxin A4 (LXA4), resolvin D1 (RvD1) and neuroprotectin D1 (NPD1) were quantified. In the patient group with highly active MS, 15-HETE and PGE2 were increased, which are products of the 15-lipoxygenase and cyclooxygenase pathways. The proresolution mediator RvD1 was significantly upregulated and NPD1 was detected in the highly active group only. LXA4 levels were not increased in patients with highly active MS. Conclusions Lipid mediator pathways are regulated differentially in the cerebrospinal fluid of MS patients, depending on disease severity. Non-exhaustive or possibly ‘delayed’ resolution pathways may suggest a defective resolution program in patients with highly active MS. Longitudinal analyses are required to hetero-typify this differential resolution capacity, which may be associated with disease progression, longevity and eventual termination.
Glia | 2010
Marcel A. Kopp; Benedikt Brommer; Nicole Gatzemeier; Jan M. Schwab; Harald Prüss
Semaphorin 7A (Sema7A) is involved in the formation of the central nervous system during development by operating axon guidance and neuronal migration. We investigated the expression of the TGFβ‐inducible Sema7A following spinal cord injury (SCI). After SCI, Sema7A+ cells accumulated specifically in lesion areas resulting in significantly enhanced Sema7A expression at the injury site (P < 0.0001). During the first days lesional Sema7A expression was confined to neurons, ballooned neurite fibers/retraction bulbs, and endothelial cells. At day 7, we observed Sema7A expression by components of the glial scar, such as reactive astrocytes and pronounced extracellular Sema7A deposition. In the direct perilesional rim, Sema7A+ astrocytes coexpressed the activation‐associated intermediate filament vimentin. In the injured spinal cord, numbers of Sema7A+ cells reached maximum levels at day 14. The restricted accumulation of Sema7A+ reactive astrocytes and Sema7A deposition in fibronectin+ extracellular matrix territories suggests a participation of the fibrostimulatory Sema7A in the developing and maturating scar following SCI. In addition, Sema7A appears to be marker a for astrocyte activation.
The Journal of Neuroscience | 2017
Isaac Francos-Quijorna; Eva Santos-Nogueira; Karsten Gronert; Aaron B. Sullivan; Marcel A. Kopp; Benedikt Brommer; Samuel David; Jan M. Schwab; Rubèn López-Vales
Resolution of inflammation is defective after spinal cord injury (SCI), which impairs tissue integrity and remodeling and leads to functional deficits. Effective pharmacological treatments for SCI are not currently available. Maresin 1 (MaR1) is a highly conserved specialized proresolving mediator (SPM) hosting potent anti-inflammatory and proresolving properties with potent tissue regenerative actions. Here, we provide evidence that the inappropriate biosynthesis of SPM in the lesioned spinal cord hampers the resolution of inflammation and leads to deleterious consequences on neurological outcome in adult female mice. We report that, after spinal cord contusion injury in adult female mice, the biosynthesis of SPM is not induced in the lesion site up to 2 weeks after injury. Exogenous administration of MaR1, a highly conserved SPM, propagated inflammatory resolution after SCI, as revealed by accelerated clearance of neutrophils and a reduction in macrophage accumulation at the lesion site. In the search of mechanisms underlying the proresolving actions of MaR1 in SCI, we found that this SPM facilitated several hallmarks of resolution of inflammation, including reduction of proinflammatory cytokines (CXCL1, CXCL2, CCL3, CCL4, IL6, and CSF3), silencing of major inflammatory intracellular signaling cascades (STAT1, STAT3, STAT5, p38, and ERK1/2), redirection of macrophage activation toward a prorepair phenotype, and increase of the phagocytic engulfment of neutrophils by macrophages. Interestingly, MaR1 administration improved locomotor recovery significantly and mitigated secondary injury progression in a clinical relevant model of SCI. These findings suggest that proresolution, immunoresolvent therapies constitute a novel approach to improving neurological recovery after acute SCI. SIGNIFICANCE STATEMENT Inflammation is a protective response to injury or infection. To result in tissue homeostasis, inflammation has to resolve over time. Incomplete or delayed resolution leads to detrimental effects, including propagated tissue damage and impaired wound healing, as occurs after spinal cord injury (SCI). We report that inflammation after SCI is dysregulated in part due to inappropriate synthesis of proresolving lipid mediators. We demonstrate that the administration of the resolution agonist referred to as maresin 1 (MaR1) after SCI actively propagates resolution processes at the lesion site and improves neurological outcome. MaR1 is identified as an interventional candidate to attenuate dysregulated lesional inflammation and to restore functional recovery after SCI.
Nature Neuroscience | 2017
Harald Prüss; Andrea Tedeschi; Aude Thiriot; Lydia Lynch; Scott M. Loughhead; Susanne Stutte; Irina B. Mazo; Marcel A. Kopp; Benedikt Brommer; Christian Blex; Laura-Christin Geurtz; Thomas Liebscher; Andreas Niedeggen; Ulrich Dirnagl; Frank Bradke; Magdalena Sarah Volz; Michael J. DeVivo; Yuying Chen; Ulrich H. von Andrian; Jan M. Schwab
Acute spinal cord injury (SCI) causes systemic immunosuppression and life-threatening infections, thought to result from noradrenergic overactivation and excess glucocorticoid release via hypothalamus–pituitary–adrenal axis stimulation. Instead of consecutive hypothalamus–pituitary–adrenal axis activation, we report that acute SCI in mice induced suppression of serum norepinephrine and concomitant increase in cortisol, despite suppressed adrenocorticotropic hormone, indicating primary (adrenal) hypercortisolism. This neurogenic effect was more pronounced after high-thoracic level (Th1) SCI disconnecting adrenal gland innervation, compared with low-thoracic level (Th9) SCI. Prophylactic adrenalectomy completely prevented SCI-induced glucocorticoid excess and lymphocyte depletion but did not prevent pneumonia. When adrenalectomized mice were transplanted with denervated adrenal glands to restore physiologic glucocorticoid levels, the animals were completely protected from pneumonia. These findings identify a maladaptive sympathetic-neuroendocrine adrenal reflex mediating immunosuppression after SCI, implying that therapeutic normalization of the glucocorticoid and catecholamine imbalance in SCI patients could be a strategy to prevent detrimental infections.