Ralf Watzlawick
Charité
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Ralf Watzlawick.
PLOS Biology | 2016
Ralf Watzlawick; Julian Rind; Emily S. Sena; Benedikt Brommer; Tian Zhang; Marcel A. Kopp; Ulrich Dirnagl; Malcolm R. Macleod; David W. Howells; Jan M. Schwab
Olfactory ensheathing cell (OEC) transplantation is a candidate cellular treatment approach for human spinal cord injury (SCI) due to their unique regenerative potential and autologous origin. The objective of this study was, through a meta-epidemiologic approach, (i) to assess the efficacy of OEC transplantation on locomotor recovery after traumatic experimental SCI and (ii) to estimate the likelihood of reporting bias and/or missing data. A study protocol was finalized before data collection. Embedded into a systematic review and meta-analysis, we conducted a literature research of databases including PubMed, EMBASE, and ISI Web of Science from 1949/01 to 2014/10 with no language restrictions, screened by two independent investigators. Studies were included if they assessed neurobehavioral improvement after traumatic experimental SCI, administrated no combined interventions, and reported the number of animals in the treatment and control group. Individual effect sizes were pooled using a random effects model. Details regarding the study design were extracted and impact of these on locomotor outcome was assessed by meta-regression. Missing data (reporting bias) was determined by Egger regression and Funnel-plotting. The primary study outcome assessed was improvement in locomotor function at the final time point of measurement. We included 49 studies (62 experiments, 1,164 animals) in the final analysis. The overall improvement in locomotor function after OEC transplantation, measured using the Basso, Beattie, and Bresnahan (BBB) score, was 20.3% (95% CI 17.8–29.5). One missing study was imputed by trim and fill analysis, suggesting only slight publication bias and reducing the overall effect to a 19.2% improvement of locomotor activity. Dose-response ratio supports neurobiological plausibility. Studies were assessed using a 9-point item quality score, resulting in a median score of 5 (interquartile range [IQR] 3–5). In conclusion, OEC transplantation exerts considerable beneficial effects on neurobehavioral recovery after traumatic experimental SCI. Publication bias was minimal and affirms the translational potential of efficacy, but safety cannot be adequately assessed. The data justify OECs as a cellular substrate to develop and optimize minimally invasive and safe cellular transplantation paradigms for the lesioned spinal cord embedded into state-of-the-art Phase I/II clinical trial design studies for human SCI.
JAMA Neurology | 2014
Ralf Watzlawick; Emily S. Sena; Ulrich Dirnagl; Benedikt Brommer; Marcel A. Kopp; Malcolm R. Macleod; David W. Howells; Jan M. Schwab
IMPORTANCE Blockade of small GTPase-RhoA signaling pathway is considered a candidate translational strategy to improve functional outcome after spinal cord injury (SCI) in humans. Pooling preclinical evidence by orthodox meta-analysis is confounded by missing data (publication bias). OBJECTIVE To conduct a systematic review and meta-analysis of RhoA/Rho-associated coiled-coil containing protein kinase (ROCK) blocking approaches to (1) analyze the impact of bias that may lead to inflated effect sizes and (2) determine the normalized effect size of functional locomotor recovery after experimental thoracic SCI. EVIDENCE REVIEW We conducted a systematic search of PubMed, EMBASE, and Web of Science and hand searched related references. Studies were selected if they reported the effect of RhoA/ROCK inhibitors (C3-exoenzmye, fasudil, Y-27632, ibuprofen, siRhoA, and p21) in experimental spinal cord hemisection, contusion, or transection on locomotor recovery measured by the Basso, Beattie, and Bresnahan score or the Basso Mouse Scale for Locomotion. Two investigators independently assessed the identified studies. Details of individual study characteristics from each publication were extracted and effect sizes pooled using a random effects model. We assessed risk for bias using a 9-point-item quality checklist and calculated publication bias with Egger regression and the trim and fill method. A stratified meta-analysis was used to assess the impact of study characteristics on locomotor recovery. FINDINGS Thirty studies (725 animals) were identified. RhoA/ROCK inhibition was found to improve locomotor outcome by 21% (95% CI, 16.0-26.6). Assessment of publication bias by the trim and fill method suggested that 30% of experiments remain unpublished. Inclusion of these theoretical missing studies suggested a 27% overestimation of efficacy, reducing the overall efficacy to a 15% improvement in locomotor recovery. Low study quality was associated with larger estimates of neurobehavioral outcome. CONCLUSIONS AND RELEVANCE Taking into account publication bias, RhoA/ROCK inhibition improves functional outcome in experimental SCI by 15%. This is a plausible strategy for the pharmacological augmentation of neurorehabilitation after human SCI. These findings support the necessity of a systematic analysis to identify preclinical bias before embarking on a clinical trial.
Systematic Reviews | 2013
H. M. Vesterinen; Gillian L. Currie; Samantha R Carter; Sarah Mee; Ralf Watzlawick; Kieren J. Egan; Malcolm R. Macleod; Emily S. Sena
BackgroundThere is currently only one clinically approved drug, tissue plasminogen activator (tPA), for the treatment of acute ischaemic stroke. The RhoA pathway, including RhoA and its downstream effector Rho kinase (ROCK), has been identified as a possible therapeutic target. Our aim was to assess the impact of study design characteristics and study quality on reported measures of efficacy and to assess for the presence and impact of publication bias.MethodsWe conducted a systematic review and meta-analysis on publications describing the efficacy of RhoA and ROCK inhibitors in animal models of focal cerebral ischaemia where outcome was assessed as a change in lesion size or neurobehavioural score, or both.ResultsWe identified 25 published papers which met our inclusion criteria. RhoA and ROCK inhibitors reduced lesion size by 37.3% in models of focal cerebral ischaemia (95% CI, 28.6% to 46.0%, 41 comparisons), and reduced neurobehavioural data by 40.5% (33.4% to 47.7%, 30 comparisons). Overall study quality was low (median=4, interquartile range 3–5) and measures to reduce bias were seldom reported. Publication bias was prevalent and associated with a substantial overstatement of efficacy for lesion size.ConclusionsRhoA and ROCK inhibitors appear to be effective in animal models of stroke. However the low quality score, publication bias and limited number of studies are areas which need attention prior to conducting clinical trials.
PLOS Pathogens | 2014
Francesca Diane M. Liu; Elisabeth E. Kenngott; Micha F. Schröter; Anja A. Kühl; Silke Jennrich; Ralf Watzlawick; Ute Hoffmann; Thorsten Wolff; Stephen Norley; Alexander Scheffold; Jason S. Stumhofer; Christiaan J. M. Saris; Jan M. Schwab; Christopher A. Hunter; Gudrun F. Debes; Alf Hamann
Infection with influenza virus can result in massive pulmonary infiltration and potentially fatal immunopathology. Understanding the endogenous mechanisms that control immunopathology could provide a key to novel adjunct therapies for this disease. Here we show that the cytokine IL-27 plays a crucial role in protection from exaggerated inflammation during influenza virus infection. Using Il-27ra −/− mice, IL-27 was found to limit immunopathology, neutrophil accumulation, and dampened TH1 or TH17 responses via IL-10–dependent and -independent pathways. Accordingly, the absence of IL-27 signals resulted in a more severe disease course and in diminished survival without impacting viral loads. Consistent with the delayed expression of endogenous Il-27p28 during influenza, systemic treatment with recombinant IL-27 starting at the peak of virus load resulted in a major amelioration of lung pathology, strongly reduced leukocyte infiltration and improved survival without affecting viral clearance. In contrast, early application of IL-27 impaired virus clearance and worsened disease. These findings demonstrate the importance of IL-27 for the physiological control of immunopathology and the potential value of well-timed IL-27 application to treat life-threatening inflammation during lung infection.
Neurology | 2017
Marcel A. Kopp; Ralf Watzlawick; Peter Martus; Vieri Failli; Felix W. Finkenstaedt; Yuying Chen; Michael J. DeVivo; Ulrich Dirnagl; Jan M. Schwab
Objective: To investigate whether prevalent hospital-acquired pneumonia and wound infection affect the clinical long-term outcome after acute traumatic spinal cord injury (SCI). Methods: This was a longitudinal cohort study within the prospective multicenter National Spinal Cord Injury Database (Birmingham, Alabama). We screened datasets of 3,834 patients enrolled in 20 trial centers from 1995 to 2005 followed up until 2016. Eligibility criteria were cervical SCI and American Spinal Cord Injury Association impairment scale A, B, and C. Pneumonia or postoperative wound infections (Pn/Wi) acquired during acute medical care/inpatient rehabilitation were analyzed for their association with changes in the motor items of the Functional Independence Measure (FIMmotor) using regression models (primary endpoint 5-year follow-up). Pn/Wi-related mortality was assessed as a secondary endpoint (10-year follow-up). Results: A total of 1,203 patients met the eligibility criteria. During hospitalization, 564 patients (47%) developed Pn/Wi (pneumonia n = 540; postoperative wound infection n = 11; pneumonia and postoperative wound infection n = 13). Adjusted linear mixed models after multiple imputation revealed that Pn/Wi are significantly associated with lower gain in FIMmotor up to 5 years after SCI (−7.4 points, 95% confidence interval [CI] −11.5 to −3.3). Adjusted Cox regression identified Pn/Wi as a highly significant risk factor for death up to 10 years after SCI (hazard ratio 1.65, 95% CI 1.26 to 2.16). Conclusion: Hospital-acquired Pn/Wi are predictive of propagated disability and mortality after SCI. Pn/Wi qualify as a potent and targetable outcome-modifying factor. Pn/Wi prevention constitutes a viable strategy to protect functional recovery and reduce mortality. Pn/Wi can be considered as rehabilitation confounders in clinical trials.
PLOS ONE | 2015
Ralf Watzlawick; Elisabeth E. Kenngott; Francesca Diane M. Liu; Jan M. Schwab; Alf Hamann
Rapid activation of the innate immune system is critical for an efficient host response to invading pathogens. However, the inflammatory reaction has to be strictly controlled to minimize harmful immunopathology. A number of mediators including the cytokine interleukin-27 (IL-27) appear to be responsible for limitation and resolution of inflammation. Despite increasing knowledge of its suppressive effects on T cells, the influence on neutrophils and macrophages is poorly understood. To determine the role of IL-27 in innate immune responses we analysed the effect of IL-27 in a T cell independent model of zymosan-induced peritonitis. Early administration of recombinant IL-27 strongly reduced the number of neutrophils recruited to the peritoneal cavity after zymosan application as well as the neutrophil frequency in the blood. Simultaneously, IL-27 reduced the release of neutrophils from the bone marrow upon inflammation. Although cytokine levels were not affected by IL-27 treatment, the levels of the chemokines KC, MCP-1 and MIP-1α in the peritoneal fluid were strongly decreased. These findings demonstrate that IL-27 is able to control mobilisation and recruitment of neutrophils into the peritoneal cavity and identify a novel mechanism to limit inflammation caused by innate immune cells.
Evidence-based Preclinical Medicine | 2016
Theodore C. Hirst; Ralf Watzlawick; Jonathan Rhodes; Malcolm R. Macleod; Peter Andrews
Traumatic brain injury (TBI) is a major cause of death and permanent disability. Systemic hypothermia, a treatment used in TBI for many decades, has recently been found to be associated with neutral or unfavourable clinical outcomes despite apparently promising preclinical research. Systematic review and meta‐analysis is a tool to summarize literature and observe trends in experimental design and quality that underpin its general conclusions. Here we aim to use these techniques to describe the use of hypothermia in animal TBI models, collating data relating to outcome and both study design and quality. From here we intend to observe correlations between features and attempt to explain any discrepancies found between animal and clinical data. This protocol describes the relevant methodology in detail.
Neurology | 2018
Marcel A. Kopp; Peter Martus; Ralf Watzlawick; Michael J. DeVivo; Yuying Chen; Jan M. Schwab
Observational studies investigating large real-life datasets are a valuable resource in clinical research. Understanding the imperfect nature of clinical data, statistical approaches factoring in known confounders are instrumental for rigorously addressing bias.1 Our recent work identifying pneumonia and postoperative wound infections (Pn/Wi) as risk markers for impaired long-term functional recovery and survival after spinal cord injury (SCI)2 was considered as a strong statistical analysis.3 However, some unexplored putative confounders in terms of nonrandom loss to follow-up, temporal changes in clinical practice, and exclusion criteria were discussed.3 In order to evaluate and objectivize for the probability of attrition and temporal and selection bias, we apply and discuss an array of analytical tools extending beyond the format of the original publication.2
BMJ Open | 2016
Marcel A. Kopp; Thomas Liebscher; Ralf Watzlawick; Peter Martus; Stefan Laufer; Christian Blex; Ralf Schindler; Gerhard Jan Jungehülsing; Sven Knüppel; Martin Kreutzträger; Axel Ekkernkamp; Ulrich Dirnagl; Stephen M. Strittmatter; Andreas Niedeggen; Jan M. Schwab
Introduction The approved analgesic and anti-inflammatory drugs ibuprofen and indometacin block the small GTPase RhoA, a key enzyme that impedes axonal sprouting after axonal damage. Inhibition of the Rho pathway in a central nervous system-effective manner requires higher dosages compared with orthodox cyclooxygenase-blocking effects. Preclinical studies on spinal cord injury (SCI) imply improved motor recovery after ibuprofen/indometacin-mediated Rho inhibition. This has been reassessed by a meta-analysis of the underlying experimental evidence, which indicates an overall effect size of 20.2% regarding motor outcome achieved after ibuprofen/indometacin treatment compared with vehicle controls. In addition, ibuprofen/indometacin may also limit sickness behaviour, non-neurogenic systemic inflammatory response syndrome (SIRS), neuropathic pain and heterotopic ossifications after SCI. Consequently, ‘small molecule’-mediated Rho inhibition after acute SCI warrants clinical investigation. Methods and analysis Protocol of an investigator-initiated clinical open-label pilot trial on high-dose ibuprofen treatment after acute traumatic, motor-complete SCI. A sample of n=12 patients will be enrolled in two cohorts treated with 2400 mg/day ibuprofen for 4 or 12 weeks, respectively. The primary safety end point is an occurrence of serious adverse events, primarily gastroduodenal bleedings. Secondary end points are pharmacokinetics, feasibility and preliminary effects on neurological recovery, neuropathic pain and heterotopic ossifications. The primary safety analysis is based on the incidence of severe gastrointestinal bleedings. Additional analyses will be mainly descriptive and casuistic. Ethics and dissemination The clinical trial protocol was approved by the responsible German state Ethics Board, and the Federal Institute for Drugs and Medical Devices. The study complies with the Declaration of Helsinki, the principles of Good Clinical Practice and all further applicable regulations. This safety and pharmacokinetics trial informs the planning of a subsequent randomised controlled trial. Regardless of the result of the primary and secondary outcome assessments, the clinical trial will be reported as a publication in a peer-reviewed journal. Trial registration number NCT02096913; Pre-results.
Brain | 2016
Benedikt Brommer; Odilo Engel; Marcel A. Kopp; Ralf Watzlawick; Susanne Müller; Harald Prüss; Yuying Chen; Michael J. DeVivo; Felix W. Finkenstaedt; Ulrich Dirnagl; Thomas Liebscher; Andreas Meisel; Jan M. Schwab