Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Marcel A. Kopp is active.

Publication


Featured researches published by Marcel A. Kopp.


Brain | 2012

Functional neurological recovery after spinal cord injury is impaired in patients with infections

Vieri Failli; Marcel A. Kopp; Christine Gericke; Peter Martus; Susann Klingbeil; Benedikt Brommer; Ines Laginha; Yuying Chen; Michael J. DeVivo; Ulrich Dirnagl; Jan M. Schwab

Infections are a common threat to patients after spinal cord injury. Furthermore, infections might propagate neuronal death, and consequently contribute to the restriction of neurological recovery. We investigated the association of infections (i.e. pneumonia and/or postoperative wound infections) with functional neurological outcome after acute severe traumatic spinal cord injury. We screened data sets of 24 762 patients enrolled in a prospective cohort study (National Spinal Cord Injury Database, Birmingham, AL, USA). Patients were assessed according to the ASIA classification. ASIA impairment scale-classified A and B patients recruited within 24 h post-trauma (n = 1436) were selected as being a major recruitment population for interventional trials. Patients with documented pneumonia and/or postoperative wound infections (n = 581) were compared with control subjects (non-documented infections, n = 855). The functional neurological outcome parameters (i) upward ASIA impairment scale conversions; (ii) gain of ASIA motor scores; and (iii) gain of motor and sensory levels were consecutively analysed over time up to 1 year after spinal cord injury. The group with pneumonia and/or postoperative wound infections revealed less ASIA impairment scale upward conversions after 1 year than the control group (ASIA impairment scale A: 17.2 versus 23.9%, P = 0.03; ASIA impairment scale B: 57.1 versus 74.7%, P = 0.009). ASIA motor score gain [median (interquartile range)] was lower in patients with infections [ASIA impairment scale A: 8 (4-12) versus 10 (5-17), P = 0.01; ASIA impairment scale B: 19.5 (8-53.5) versus 42 (20.5-64), P = 0.03)]. Analysis of acquired motor/sensory levels supported these findings. In ASIA impairment scale A patients, the gain in motor levels (21.7 versus 33.3%, P = 0.04) and sensory levels (24.4 versus 38 of 102, 37.3%, P = 0.03) was significantly lower in the group with pneumonia and/or postoperative wound infections than in the control group. Multiple regression analysis identified pneumonia and/or postoperative wound infections as independent risk factors for impaired ASIA impairment scale upward conversion (odds ratio: 1.89, 95% confidence interval: 1.36-2.63, P < 0.0005) or lower gain in ASIA motor score (regression coefficient: -8.21, 95% confidence interval: -12.29 to -4.14, P < 0.0005). Infections associated with spinal cord injury, such as pneumonia and/or postoperative wound infections, qualify as independent risk factors for poor neurological outcome after motor complete spinal cord injury. Infections constitute a clinically relevant target for protecting the limited endogenous functional regeneration capacity. Upcoming interventional trials might gain in efficacy with improved patient stratification and might benefit from complementary protection of the intrinsic recovery potential after spinal cord injury.


Brain Pathology | 2011

Non-Resolving Aspects of Acute Inflammation after Spinal Cord Injury (SCI): Indices and Resolution Plateau

Harald Prüss; Marcel A. Kopp; Benedikt Brommer; Nicole Gatzemeier; Ines Laginha; Ulrich Dirnagl; Jan M. Schwab

Inflammatory resolution is an active, highly regulated process already encoded at the onset of inflammation and required to prevent the transition into chronic inflammation associated with spreading of tissue injury and exacerbated scarring. We introduce objective, quantitative measurements [resolution indices (Ri) and resolution plateau (RP)] to characterize inflammatory resolution and to determine the persistence (“dwell time”) of differential leukocyte subpopulations at the lesion site after acute experimental spinal cord injury (SCI). The cell type‐specific resolution interval Ri (time between maximum cell numbers and the point when they are reduced to 50%) ranges from 1.2 days for neutrophils, 1.5 days for T lymphocytes, to 55 days for microglia/macrophages. As the resolution interval neglects exiting cell trafficking in the later period of resolution (49%–0% of lesional cells), we introduced the RP, a marker for the persisting, chronified leukocyte subsets, which are likely to participate in late degeneration and non‐resolving inflammation. Here, we identify the acute inflammatory response in central nervous system (CNS) lesions as partly non self‐limiting. Both extended resolution intervals (reduced leukocyte clearance) and elevated plateaus (permanent lesional cell numbers) provide quantitative measures to characterize residual, sustained inflammation and define cognate timeframes of impaired resolution after acute SCI.


Cell and Tissue Research | 2012

Small-molecule-induced Rho-inhibition: NSAIDs after spinal cord injury

Marcel A. Kopp; Thomas Liebscher; Andreas Niedeggen; Stefan Laufer; Benedikt Brommer; Gerhard Jan Jungehülsing; Stephen M. Strittmatter; Ulrich Dirnagl; Jan M. Schwab

Limited axonal plasticity within the central nervous system (CNS) is a major restriction for functional recovery after CNS injury. The small GTPase RhoA is a key molecule of the converging downstream cascade that leads to the inhibition of axonal re-growth. The Rho-pathway integrates growth inhibitory signals derived from extracellular cues, such as chondroitin sulfate proteoglycans, Nogo-A, myelin-associated glycoprotein, oligodendrocyte-myelin glycoprotein, Ephrins and repulsive guidance molecule-A, into the damaged axon. Consequently, the activation of RhoA results in growth cone collapse and finally outgrowth failure. In turn, the inhibition of RhoA-activation blinds the injured axon to its growth inhibitory environment resulting in enhanced axonal sprouting and plasticity. This has been demonstrated in various CNS-injury models for direct RhoA-inhibition and for downstream/upstream blockade of the RhoA-associated pathway. In addition, RhoA-inhibition reduces apoptotic cell death and secondary damage and improves locomotor recovery in clinically relevant models after experimental spinal cord injury (SCI). Unexpectedly, a subset of “small molecules” from the group of non-steroid anti-inflammatory drugs, particularly the FDA-approved ibuprofen, has recently been identified as (1) inhibiting RhoA-activation, (2) enhancing axonal sprouting/regeneration, (3) protecting “tissue at risk” (neuroprotection) and (4) improving motor recovery confined to realistic therapeutical time-frames in clinically relevant SCI models. Here, we survey the effect of small-molecule-induced RhoA-inhibition on axonal plasticity and neurofunctional outcome in CNS injury paradigms. Furthermore, we discuss the body of preclinical evidence for a possible clinical translation with a focus on ibuprofen and illustrate putative risks and benefits for the treatment of acute SCI.


PLOS Biology | 2016

Olfactory Ensheathing Cell Transplantation in Experimental Spinal Cord Injury: Effect size and Reporting Bias of 62 Experimental Treatments: A Systematic Review and Meta-Analysis

Ralf Watzlawick; Julian Rind; Emily S. Sena; Benedikt Brommer; Tian Zhang; Marcel A. Kopp; Ulrich Dirnagl; Malcolm R. Macleod; David W. Howells; Jan M. Schwab

Olfactory ensheathing cell (OEC) transplantation is a candidate cellular treatment approach for human spinal cord injury (SCI) due to their unique regenerative potential and autologous origin. The objective of this study was, through a meta-epidemiologic approach, (i) to assess the efficacy of OEC transplantation on locomotor recovery after traumatic experimental SCI and (ii) to estimate the likelihood of reporting bias and/or missing data. A study protocol was finalized before data collection. Embedded into a systematic review and meta-analysis, we conducted a literature research of databases including PubMed, EMBASE, and ISI Web of Science from 1949/01 to 2014/10 with no language restrictions, screened by two independent investigators. Studies were included if they assessed neurobehavioral improvement after traumatic experimental SCI, administrated no combined interventions, and reported the number of animals in the treatment and control group. Individual effect sizes were pooled using a random effects model. Details regarding the study design were extracted and impact of these on locomotor outcome was assessed by meta-regression. Missing data (reporting bias) was determined by Egger regression and Funnel-plotting. The primary study outcome assessed was improvement in locomotor function at the final time point of measurement. We included 49 studies (62 experiments, 1,164 animals) in the final analysis. The overall improvement in locomotor function after OEC transplantation, measured using the Basso, Beattie, and Bresnahan (BBB) score, was 20.3% (95% CI 17.8–29.5). One missing study was imputed by trim and fill analysis, suggesting only slight publication bias and reducing the overall effect to a 19.2% improvement of locomotor activity. Dose-response ratio supports neurobiological plausibility. Studies were assessed using a 9-point item quality score, resulting in a median score of 5 (interquartile range [IQR] 3–5). In conclusion, OEC transplantation exerts considerable beneficial effects on neurobehavioral recovery after traumatic experimental SCI. Publication bias was minimal and affirms the translational potential of efficacy, but safety cannot be adequately assessed. The data justify OECs as a cellular substrate to develop and optimize minimally invasive and safe cellular transplantation paradigms for the lesioned spinal cord embedded into state-of-the-art Phase I/II clinical trial design studies for human SCI.


JAMA Neurology | 2014

Effect and Reporting Bias of RhoA/ROCK-Blockade Intervention on Locomotor Recovery After Spinal Cord Injury: A Systematic Review and Meta-analysis

Ralf Watzlawick; Emily S. Sena; Ulrich Dirnagl; Benedikt Brommer; Marcel A. Kopp; Malcolm R. Macleod; David W. Howells; Jan M. Schwab

IMPORTANCE Blockade of small GTPase-RhoA signaling pathway is considered a candidate translational strategy to improve functional outcome after spinal cord injury (SCI) in humans. Pooling preclinical evidence by orthodox meta-analysis is confounded by missing data (publication bias). OBJECTIVE To conduct a systematic review and meta-analysis of RhoA/Rho-associated coiled-coil containing protein kinase (ROCK) blocking approaches to (1) analyze the impact of bias that may lead to inflated effect sizes and (2) determine the normalized effect size of functional locomotor recovery after experimental thoracic SCI. EVIDENCE REVIEW We conducted a systematic search of PubMed, EMBASE, and Web of Science and hand searched related references. Studies were selected if they reported the effect of RhoA/ROCK inhibitors (C3-exoenzmye, fasudil, Y-27632, ibuprofen, siRhoA, and p21) in experimental spinal cord hemisection, contusion, or transection on locomotor recovery measured by the Basso, Beattie, and Bresnahan score or the Basso Mouse Scale for Locomotion. Two investigators independently assessed the identified studies. Details of individual study characteristics from each publication were extracted and effect sizes pooled using a random effects model. We assessed risk for bias using a 9-point-item quality checklist and calculated publication bias with Egger regression and the trim and fill method. A stratified meta-analysis was used to assess the impact of study characteristics on locomotor recovery. FINDINGS Thirty studies (725 animals) were identified. RhoA/ROCK inhibition was found to improve locomotor outcome by 21% (95% CI, 16.0-26.6). Assessment of publication bias by the trim and fill method suggested that 30% of experiments remain unpublished. Inclusion of these theoretical missing studies suggested a 27% overestimation of efficacy, reducing the overall efficacy to a 15% improvement in locomotor recovery. Low study quality was associated with larger estimates of neurobehavioral outcome. CONCLUSIONS AND RELEVANCE Taking into account publication bias, RhoA/ROCK inhibition improves functional outcome in experimental SCI by 15%. This is a plausible strategy for the pharmacological augmentation of neurorehabilitation after human SCI. These findings support the necessity of a systematic analysis to identify preclinical bias before embarking on a clinical trial.


Glia | 2010

Spinal cord injury induces differential expression of the profibrotic semaphorin 7A in the developing and mature glial scar

Marcel A. Kopp; Benedikt Brommer; Nicole Gatzemeier; Jan M. Schwab; Harald Prüss

Semaphorin 7A (Sema7A) is involved in the formation of the central nervous system during development by operating axon guidance and neuronal migration. We investigated the expression of the TGFβ‐inducible Sema7A following spinal cord injury (SCI). After SCI, Sema7A+ cells accumulated specifically in lesion areas resulting in significantly enhanced Sema7A expression at the injury site (P < 0.0001). During the first days lesional Sema7A expression was confined to neurons, ballooned neurite fibers/retraction bulbs, and endothelial cells. At day 7, we observed Sema7A expression by components of the glial scar, such as reactive astrocytes and pronounced extracellular Sema7A deposition. In the direct perilesional rim, Sema7A+ astrocytes coexpressed the activation‐associated intermediate filament vimentin. In the injured spinal cord, numbers of Sema7A+ cells reached maximum levels at day 14. The restricted accumulation of Sema7A+ reactive astrocytes and Sema7A deposition in fibronectin+ extracellular matrix territories suggests a participation of the fibrostimulatory Sema7A in the developing and maturating scar following SCI. In addition, Sema7A appears to be marker a for astrocyte activation.


The Journal of Neuroscience | 2017

Maresin 1 promotes inflammatory resolution, neuroprotection and functional neurological recovery after spinal cord injury

Isaac Francos-Quijorna; Eva Santos-Nogueira; Karsten Gronert; Aaron B. Sullivan; Marcel A. Kopp; Benedikt Brommer; Samuel David; Jan M. Schwab; Rubèn López-Vales

Resolution of inflammation is defective after spinal cord injury (SCI), which impairs tissue integrity and remodeling and leads to functional deficits. Effective pharmacological treatments for SCI are not currently available. Maresin 1 (MaR1) is a highly conserved specialized proresolving mediator (SPM) hosting potent anti-inflammatory and proresolving properties with potent tissue regenerative actions. Here, we provide evidence that the inappropriate biosynthesis of SPM in the lesioned spinal cord hampers the resolution of inflammation and leads to deleterious consequences on neurological outcome in adult female mice. We report that, after spinal cord contusion injury in adult female mice, the biosynthesis of SPM is not induced in the lesion site up to 2 weeks after injury. Exogenous administration of MaR1, a highly conserved SPM, propagated inflammatory resolution after SCI, as revealed by accelerated clearance of neutrophils and a reduction in macrophage accumulation at the lesion site. In the search of mechanisms underlying the proresolving actions of MaR1 in SCI, we found that this SPM facilitated several hallmarks of resolution of inflammation, including reduction of proinflammatory cytokines (CXCL1, CXCL2, CCL3, CCL4, IL6, and CSF3), silencing of major inflammatory intracellular signaling cascades (STAT1, STAT3, STAT5, p38, and ERK1/2), redirection of macrophage activation toward a prorepair phenotype, and increase of the phagocytic engulfment of neutrophils by macrophages. Interestingly, MaR1 administration improved locomotor recovery significantly and mitigated secondary injury progression in a clinical relevant model of SCI. These findings suggest that proresolution, immunoresolvent therapies constitute a novel approach to improving neurological recovery after acute SCI. SIGNIFICANCE STATEMENT Inflammation is a protective response to injury or infection. To result in tissue homeostasis, inflammation has to resolve over time. Incomplete or delayed resolution leads to detrimental effects, including propagated tissue damage and impaired wound healing, as occurs after spinal cord injury (SCI). We report that inflammation after SCI is dysregulated in part due to inappropriate synthesis of proresolving lipid mediators. We demonstrate that the administration of the resolution agonist referred to as maresin 1 (MaR1) after SCI actively propagates resolution processes at the lesion site and improves neurological outcome. MaR1 is identified as an interventional candidate to attenuate dysregulated lesional inflammation and to restore functional recovery after SCI.


Neurology | 2017

Long-term functional outcome in patients with acquired infections after acute spinal cord injury

Marcel A. Kopp; Ralf Watzlawick; Peter Martus; Vieri Failli; Felix W. Finkenstaedt; Yuying Chen; Michael J. DeVivo; Ulrich Dirnagl; Jan M. Schwab

Objective: To investigate whether prevalent hospital-acquired pneumonia and wound infection affect the clinical long-term outcome after acute traumatic spinal cord injury (SCI). Methods: This was a longitudinal cohort study within the prospective multicenter National Spinal Cord Injury Database (Birmingham, Alabama). We screened datasets of 3,834 patients enrolled in 20 trial centers from 1995 to 2005 followed up until 2016. Eligibility criteria were cervical SCI and American Spinal Cord Injury Association impairment scale A, B, and C. Pneumonia or postoperative wound infections (Pn/Wi) acquired during acute medical care/inpatient rehabilitation were analyzed for their association with changes in the motor items of the Functional Independence Measure (FIMmotor) using regression models (primary endpoint 5-year follow-up). Pn/Wi-related mortality was assessed as a secondary endpoint (10-year follow-up). Results: A total of 1,203 patients met the eligibility criteria. During hospitalization, 564 patients (47%) developed Pn/Wi (pneumonia n = 540; postoperative wound infection n = 11; pneumonia and postoperative wound infection n = 13). Adjusted linear mixed models after multiple imputation revealed that Pn/Wi are significantly associated with lower gain in FIMmotor up to 5 years after SCI (−7.4 points, 95% confidence interval [CI] −11.5 to −3.3). Adjusted Cox regression identified Pn/Wi as a highly significant risk factor for death up to 10 years after SCI (hazard ratio 1.65, 95% CI 1.26 to 2.16). Conclusion: Hospital-acquired Pn/Wi are predictive of propagated disability and mortality after SCI. Pn/Wi qualify as a potent and targetable outcome-modifying factor. Pn/Wi prevention constitutes a viable strategy to protect functional recovery and reduce mortality. Pn/Wi can be considered as rehabilitation confounders in clinical trials.


Nature Neuroscience | 2017

Spinal cord injury-induced immunodeficiency is mediated by a sympathetic-neuroendocrine adrenal reflex

Harald Prüss; Andrea Tedeschi; Aude Thiriot; Lydia Lynch; Scott M. Loughhead; Susanne Stutte; Irina B. Mazo; Marcel A. Kopp; Benedikt Brommer; Christian Blex; Laura-Christin Geurtz; Thomas Liebscher; Andreas Niedeggen; Ulrich Dirnagl; Frank Bradke; Magdalena Sarah Volz; Michael J. DeVivo; Yuying Chen; Ulrich H. von Andrian; Jan M. Schwab

Acute spinal cord injury (SCI) causes systemic immunosuppression and life-threatening infections, thought to result from noradrenergic overactivation and excess glucocorticoid release via hypothalamus–pituitary–adrenal axis stimulation. Instead of consecutive hypothalamus–pituitary–adrenal axis activation, we report that acute SCI in mice induced suppression of serum norepinephrine and concomitant increase in cortisol, despite suppressed adrenocorticotropic hormone, indicating primary (adrenal) hypercortisolism. This neurogenic effect was more pronounced after high-thoracic level (Th1) SCI disconnecting adrenal gland innervation, compared with low-thoracic level (Th9) SCI. Prophylactic adrenalectomy completely prevented SCI-induced glucocorticoid excess and lymphocyte depletion but did not prevent pneumonia. When adrenalectomized mice were transplanted with denervated adrenal glands to restore physiologic glucocorticoid levels, the animals were completely protected from pneumonia. These findings identify a maladaptive sympathetic-neuroendocrine adrenal reflex mediating immunosuppression after SCI, implying that therapeutic normalization of the glucocorticoid and catecholamine imbalance in SCI patients could be a strategy to prevent detrimental infections.


Neurology | 2018

Corroborating evidence by exploring sources of bias in observational spinal cord injury studies

Marcel A. Kopp; Peter Martus; Ralf Watzlawick; Michael J. DeVivo; Yuying Chen; Jan M. Schwab

Observational studies investigating large real-life datasets are a valuable resource in clinical research. Understanding the imperfect nature of clinical data, statistical approaches factoring in known confounders are instrumental for rigorously addressing bias.1 Our recent work identifying pneumonia and postoperative wound infections (Pn/Wi) as risk markers for impaired long-term functional recovery and survival after spinal cord injury (SCI)2 was considered as a strong statistical analysis.3 However, some unexplored putative confounders in terms of nonrandom loss to follow-up, temporal changes in clinical practice, and exclusion criteria were discussed.3 In order to evaluate and objectivize for the probability of attrition and temporal and selection bias, we apply and discuss an array of analytical tools extending beyond the format of the original publication.2

Collaboration


Dive into the Marcel A. Kopp's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Harald Prüss

German Center for Neurodegenerative Diseases

View shared research outputs
Top Co-Authors

Avatar

Peter Martus

University of Tübingen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Michael J. DeVivo

University of Alabama at Birmingham

View shared research outputs
Researchain Logo
Decentralizing Knowledge