Benjamin B. Davis
University of California, Davis
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Benjamin B. Davis.
Proceedings of the National Academy of Sciences of the United States of America | 2006
Danyan Xu; Ning Li; Yuxia He; Valeriy Timofeyev; Ling Lu; Hsing Ju Tsai; In Hae Kim; Dipika Tuteja; Robertino K. Mateo; Anil Singapuri; Benjamin B. Davis; Reginald I. Low; Bruce D. Hammock; Nipavan Chiamvimonvat
Sustained cardiac hypertrophy represents one of the most common causes leading to cardiac failure. There is emerging evidence to implicate the involvement of NF-κB in the development of cardiac hypertrophy. However, several critical questions remain unanswered. We tested the use of soluble epoxide hydrolase (sEH) inhibitors as a means to enhance the biological activities of epoxyeicosatrienoic acids (EETs) to treat cardiac hypertrophy. sEH catalyzes the conversion of EETs to form the corresponding dihydroxyeicosatrienoic acids. Previous data have suggested that EETs may inhibit the activation of NF-κB-mediated gene transcription. We directly demonstrate the beneficial effects of several potent sEH inhibitors (sEHIs) in cardiac hypertrophy. Specifically, we show that sEHIs can prevent the development of cardiac hypertrophy using a murine model of pressure-induced cardiac hypertrophy. In addition, sEHIs reverse the preestablished cardiac hypertrophy caused by chronic pressure overload. We further demonstrate that these compounds potently block the NF-κB activation in cardiac myocytes. Moreover, by using in vivo electrophysiologic recordings, our study shows a beneficial effect of the compounds in the prevention of cardiac arrhythmias that occur in association with cardiac hypertrophy. We conclude that the use of sEHIs to increase the level of the endogenous lipid epoxides such as EETs may represent a viable and completely unexplored avenue to reduce cardiac hypertrophy by blocking NF-κB activation.
Proceedings of the National Academy of Sciences of the United States of America | 2002
Benjamin B. Davis; David Thompson; Laura L. Howard; Christophe Morisseau; Bruce D. Hammock; Robert H. Weiss
Atherosclerosis, in its myriad incarnations the foremost killer disease in the industrialized world, is characterized by aberrant proliferation of vascular smooth muscle (VSM) cells in part as a result of the recruitment of inflammatory cells to the blood vessel wall. The epoxyeicosatrienoic acids are synthesized from arachidonic acid in a reaction catalyzed by the cytochrome P450 system and are vasoactive substances. Metabolism of these compounds by epoxide hydrolases results in the formation of compounds that affect the vasculature in a pleiotropic manner. As an outgrowth of our observations that urea inhibitors of the soluble epoxide hydrolase (sEH) reduce blood pressure in spontaneously hypertensive rats as well as the findings of other investigators that these compounds possess antiinflammatory actions, we have examined the effect of sEH inhibitors on VSM cell proliferation. We now show that the sEH inhibitor 1-cyclohexyl-3-dodecyl urea (CDU) inhibits human VSM cell proliferation in a dose-dependent manner and is associated with a decrease in the level of cyclin D1. In addition, cis-epoxyeicosatrienoic acid mimics the growth-suppressive activity of CDU; there is no evidence of cellular toxicity or apoptosis in CDU-treated cells when incubated with 20 μM CDU for up to 48 h. These results, in light of the antiinflammatory and antihypertensive properties of these compounds that have been demonstrated already, suggest that the urea class of sEH inhibitors may be useful for therapy for diseases such as hypertension and atherosclerosis characterized by exuberant VSM cell proliferation and vascular inflammation.
Journal of Cardiovascular Pharmacology | 2008
Arzu Ulu; Benjamin B. Davis; Hsing Ju Tsai; In Hae Kim; Christophe Morisseau; Bora Inceoglu; Oliver Fiehn; Bruce D. Hammock; Robert H. Weiss
To determine whether sEH inhibitors influence atherosclerotic lesion formation, we used an established murine model of accelerated atherogenesis, ApoE knockout (-/-) mice. The sEH inhibitor, 1-adamantan-3-(5-(2-(2-ethylethoxy)ethoxy)pentyl)urea (AEPU) was delivered in drinking water. All animals were fed an atherogenic diet while simultaneously infused with angiotensin II by osmotic minipump to induce atherosclerosis. In AEPU-treated animals, there was a 53% reduction in atherosclerotic lesions in the descending aortae as compared to control aortae. AEPU and its major metabolites were detected in the plasma of animals which received it. As expected from the inhibition of sEH, a significant increase in linoleic and arachidonic acid epoxides, as well as an increase in individual 11,12-EET/DHET and 14,15-EET/DHET ratios, were observed. The reduction in atherosclerotic lesion area was inversely correlated with 11,12- and 14,15- EET/DHET ratios, suggesting that the reduction corresponds to the inhibition of sEH. Our data suggest that orally-available sEH inhibitors may be useful in the treatment of patients with atherosclerotic cardiovascular disease.
international conference on mobile systems, applications, and services | 2013
Benjamin B. Davis; Hao Chen
An obvious asset of the Android platform is the tremendous number and variety of available apps. There is a less obvious, but potentially even more important, benefit to the fact that nearly all apps are developed using a common platform. We can leverage the relatively uniform nature of Android apps to allow users to tweak applications for improved security, usability, and functionality with relative ease (compared to desktop applications). We design and implement an Android app rewriting framework for customizing behavior of existing applications without requiring source code or app-specific guidance. Following app-agnostic transformation policies, our system rewrites applications to insert, remove, or modify behavior. The rewritten application can run on any unmodified Android device, without requiring rooting or other custom software. This paper describes RetroSkeleton, our app rewriting framework, including static and dynamic interception of method invocations, and creating policies that integrate with each target app. We show that our system is capable of supporting a variety of useful policies, including providing flexible fine-grained network access control, building HTTPS-Everywhere functionality into apps, implementing automatic app localization, informing users of hidden behavior in apps, and updating apps depending on outdated APIs. We evaluate these policies by rewriting and testing more than one thousand real-world apps from Google Play.
International Journal of Cardiology | 2013
Dan Yan Xu; Benjamin B. Davis; Zhen He Wang; Shui Ping Zhao; Binaya Wasti; Zhe Liang Liu; Ning Li; Christophe Morisseau; Nipavan Chiamvimonvat; Bruce D. Hammock
BACKGROUND Epoxyeicosatrienoic acids (EETs) are natural angiogenic mediators regulated by soluble epoxide hydrolase (sEH). Inhibitors of sEH can stabilize EETs levels and were reported to reduce atherosclerosis and inhibit myocardial infarction in animal models. In this work, we investigated whether increasing EETs with the sEH inhibitor t-AUCB would increase angiogenesis related function in endothelial progenitor cells (EPCs) from patients with acute myocardial infarction (AMI). METHODS AND RESULTS EPCs were isolated from 50 AMI patients and 50 healthy subjects (control). EPCs were treated with different concentrations of t-AUCB for 24h with or without peroxisome proliferator activated receptor γ (PPARγ) inhibitor GW9662. Migration of EPCs was assayed in trans-well chambers. Angiogenesis assays were performed using a Matrigel-Matrix in vitro model. The expression of vascular endothelial growth factor (VEGF), hypoxia-inducible factor 1α (HIF-1α) mRNA and protein in EPCs was measured by real-time PCR or Western blot, respectively. Also, the concentration of EETs in the culture supernatant was detected by ELISA. The activity of EPCs in the AMI patient group was reduced compared to healthy controls. Whereas increasing EET levels with t-AUCB promoted a dose dependent angiogenesis and migration in EPCs from AMI patients. Additionally, the t-AUCB dose dependently increased the expression of the angiogenic factors VEGF and HIF-α. Lastly, we provide evidence that these effects were PPARγ dependent. CONCLUSION The results demonstrate that the sEH inhibitor positively modulated the functions of EPCs in patients with AMI through the EETs-PPARγ pathway. The present study suggests the potential utility of sEHi in the therapy of ischemic heart disease.
Biochemical and Biophysical Research Communications | 2011
Benjamin B. Davis; Jun Yan Liu; Daniel J. Tancredi; Lei Wang; Scott I. Simon; Bruce D. Hammock; Kent E. Pinkerton
Excess leukocyte recruitment to the lung plays a central role in the development or exacerbation of several lung inflammatory diseases including chronic obstructive pulmonary disease. Epoxyeicosatrienoic acids (EETs) are cytochrome P-450 metabolites of arachidonic acid reported to have multiple biological functions, including blocking of leukocyte recruitment to inflamed endothelium in cell culture through reduction of adhesion molecule expression. Inhibition of the EET regulatory enzyme, soluble epoxide hydrolase (sEH) also has been reported to have anti-inflammatory effects in vivo including reduced leukocyte recruitment to the lung. We tested the hypothesis that the in vivo anti-inflammatory effects of sEH inhibitors act through the same mechanisms as the in vitro anti-inflammatory effects of EETs in a rat model of acute inflammation following exposure to tobacco smoke. Contrary to previously published data, we found that sEH inhibition did not reduce tobacco smoke-induced leukocyte recruitment to the lung. Furthermore, sEH inhibition did not reduce tobacco smoke-induced adhesion molecule expression in the lung vasculature. Similarly, concentrations of EETs greater than or equal to their reported effective dose did not reduce TNFα induced expression of the adhesion molecules. These results suggest that the anti-inflammatory effects of sEH inhibitors are independent of leukocyte recruitment and EETs do not reduce the adhesion molecules responsible for leukocyte recruitment in vitro. This demonstrates that the widely held belief that sEH inhibition prevents leukocyte recruitment via EET prevention of adhesion molecule expression is not consistently reproducible.
PLOS ONE | 2012
Benjamin B. Davis; Yi Hsin Shen; Daniel J. Tancredi; Vanessa Flores; Ryan P. Davis; Kent E. Pinkerton
Chronic obstructive pulmonary disease (COPD) kills approximately 2.8 million people each year, and more than 80% of COPD cases can be attributed to smoking. Leukocytes recruited to the lung contribute to COPD pathology by releasing reactive oxygen metabolites and proteolytic enzymes. In this work, we investigated where leukocytes enter the lung in the early stages of COPD in order to better understand their effect as a contributor to the development of COPD. We simultaneously evaluated the parenchyma and airways for neutrophil accumulation, as well as increases in the adhesion molecules and chemokines that cause leukocyte recruitment in the early stages of tobacco smoke induced lung disease. We found neutrophil accumulation and increased expression of adhesion molecules and chemokines in the bronchial blood vessels that correlated with the accumulation of leukocytes recovered from the lung. The expression of adhesion molecules and chemokines in other vascular beds did not correlate with leukocytes recovered in bronchoalveolar lavage fluid (BALF). These data strongly suggest leukocytes are recruited in large measure through the bronchial circulation in response to tobacco smoke. Our findings have important implications for understanding the etiology of COPD and suggest that pharmaceuticals designed to reduce leukocyte recruitment through the bronchial circulation may be a potential therapy to treat COPD.
computer and communications security | 2012
Benjamin B. Davis; Hao Chen; Matthew K. Franklin
An alibi provides evidence of a persons past location and can be critical in proving ones innocence. An alibi involves two parties: the owner, who benefits from the alibi, and the corroborator, who testifies for the owner. As mobile devices become ubiquitous, they can determine where we are and what we are doing, and help us to establish evidence of our location as they accompany us on our daily activities. Existing location-based services like Google Latitude can already track and record our every move, but these systems require us to reveal our identity when recording our location. This leaves our privacy at risk, and requires a trusted third party to maintain our location information.
Current Vascular Pharmacology | 2012
Zhen He Wang; Benjamin B. Davis; De Qian Jiang; Ting Ting Zhao; Dan Yan Xu
BACKGROUND Epoxyeicosatrienoic acids (EETs) have been shown to play a role in cardiovascular protection by reducing ischemia reperfusion injury, producing anti-inflammatory effects, and promoting angiogenesis. EETs are regulated through conversion to less active corresponding diols by soluble epoxide hydrolase (sEH). Inhibition of sEH enhances the beneficial properties of EETs and has been investigated as a possible treatment for cardiovascular diseases. CONTENT sEH inhibitors (sEHIs) have anti-inflammatory effects by stabilizing anti-inflammatory EETs. Additionally, sEHIs strongly inhibit and reverse cardiac hypertrophy. sEHIs have been shown to protect myocardial cells from ischemiareperfusion injury, treat atherosclerosis and prevent the development of hypertension. sEHIs promote blood vessels to release bradykinin via an EET-mediated STAT3 signaling pathway to elicit tolerance to ischemia. SUMMARY Inhibition of sEH has been shown to improve several aspects of cardiovascular diseases, including inflammation, hypertension, cardiac hypertrophy and atherosclerosis. For this reason, sEHIs are promising new pharmaceutical for the treatment of cardiovascular diseases.
Inhalation Toxicology | 2016
Yi Hsin Shen; Alexa Pham; Benjamin B. Davis; Suzette Smiley-Jewell; Lei Wang; Minoru Takeuchi; Daniel J. Tancredi; Kent E. Pinkerton
Abstract Context: Approximately four million people die every year from chronic obstructive pulmonary disease (COPD), with more than 80% of the cases attributed to smoking. Object: The purpose of this study was to examine the rat strain and sex-related differences and the extended tobacco smoke exposure to induce lung injury and inflammation with the goal of finding a suitable rodent model to study COPD. Methods: Male and female spontaneously hypertensive (SH) and male Wistar Kyoto (WKY) rats were exposed to filtered air (FA) or to tobacco smoke (TS: 90 mg/m3 particulate concentration) for 6 h/day, three days/week for 4 or 12 weeks. Results: Male SH rats demonstrated an enhanced, persistent inflammatory response compared to female SH and male WKY rats with extended TS exposure. Following four weeks of TS exposure, male SH rats had significantly increased total leukocytes and macrophage numbers, levels of TNF-alpha and elevated lactate dehydrogenase activity in bronchoalveolar lavage fluid compared with female SH, male WKY rats and corresponding controls. After 12 weeks of TS exposure, male SH rats continued to show significant increase in inflammatory cells and TNF-alpha, as well as IL-6 mRNA lung expression. In addition, the alveolar airspace of male SH rats exposed to TS was significantly enlarged compared to their FA controls, female SH and WKY rats. Conclusion: The male SH rat demonstrates greater cellular, inflammatory and structural changes highly reminiscent of COPD compared to female SH and male WKY rats, suggesting that the male SH rat is an optimal rodent model to study COPD.