Benjamin C.-K. Tee
Stanford University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Benjamin C.-K. Tee.
Nature Materials | 2010
Stefan C. B. Mannsfeld; Benjamin C.-K. Tee; Randall M. Stoltenberg; Christopher V. H-H. Chen; Soumendra N. Barman; Beinn V. O. Muir; Anatoliy N. Sokolov; Colin Reese; Zhenan Bao
The development of an electronic skin is critical to the realization of artificial intelligence that comes into direct contact with humans, and to biomedical applications such as prosthetic skin. To mimic the tactile sensing properties of natural skin, large arrays of pixel pressure sensors on a flexible and stretchable substrate are required. We demonstrate flexible, capacitive pressure sensors with unprecedented sensitivity and very short response times that can be inexpensively fabricated over large areas by microstructuring of thin films of the biocompatible elastomer polydimethylsiloxane. The pressure sensitivity of the microstructured films far surpassed that exhibited by unstructured elastomeric films of similar thickness, and is tunable by using different microstructures. The microstructured films were integrated into organic field-effect transistors as the dielectric layer, forming a new type of active sensor device with similarly excellent sensitivity and response times.
Advanced Materials | 2013
Mallory L. Hammock; Alex Chortos; Benjamin C.-K. Tee; Jeffrey B.-H. Tok; Zhenan Bao
Human skin is a remarkable organ. It consists of an integrated, stretchable network of sensors that relay information about tactile and thermal stimuli to the brain, allowing us to maneuver within our environment safely and effectively. Interest in large-area networks of electronic devices inspired by human skin is motivated by the promise of creating autonomous intelligent robots and biomimetic prosthetics, among other applications. The development of electronic networks comprised of flexible, stretchable, and robust devices that are compatible with large-area implementation and integrated with multiple functionalities is a testament to the progress in developing an electronic skin (e-skin) akin to human skin. E-skins are already capable of providing augmented performance over their organic counterpart, both in superior spatial resolution and thermal sensitivity. They could be further improved through the incorporation of additional functionalities (e.g., chemical and biological sensing) and desired properties (e.g., biodegradability and self-powering). Continued rapid progress in this area is promising for the development of a fully integrated e-skin in the near future.
Nature Communications | 2013
Gregor Schwartz; Benjamin C.-K. Tee; Jianguo Mei; Anthony L. Appleton; Do Hwan Kim; Huiliang Wang; Zhenan Bao
Flexible pressure sensors are essential parts of an electronic skin to allow future biomedical prostheses and robots to naturally interact with humans and the environment. Mobile biomonitoring in long-term medical diagnostics is another attractive application for these sensors. Here we report the fabrication of flexible pressure-sensitive organic thin film transistors with a maximum sensitivity of 8.4 kPa(-1), a fast response time of <10 ms, high stability over >15,000 cycles and a low power consumption of <1 mW. The combination of a microstructured polydimethylsiloxane dielectric and the high-mobility semiconducting polyisoindigobithiophene-siloxane in a monolithic transistor design enabled us to operate the devices in the subthreshold regime, where the capacitance change upon compression of the dielectric is strongly amplified. We demonstrate that our sensors can be used for non-invasive, high fidelity, continuous radial artery pulse wave monitoring, which may lead to the use of flexible pressure sensors in mobile health monitoring and remote diagnostics in cardiovascular medicine.
Nature Materials | 2013
Ying Diao; Benjamin C.-K. Tee; Gaurav Giri; Jie Xu; Do Hwan Kim; Héctor A. Becerril; Randall M. Stoltenberg; Tae Hoon Lee; Gi Xue; Stefan C. B. Mannsfeld; Zhenan Bao
Solution coating of organic semiconductors offers great potential for achieving low-cost manufacturing of large-area and flexible electronics. However, the rapid coating speed needed for industrial-scale production poses challenges to the control of thin-film morphology. Here, we report an approach--termed fluid-enhanced crystal engineering (FLUENCE)--that allows for a high degree of morphological control of solution-printed thin films. We designed a micropillar-patterned printing blade to induce recirculation in the ink for enhancing crystal growth, and engineered the curvature of the ink meniscus to control crystal nucleation. Using FLUENCE, we demonstrate the fast coating and patterning of millimetre-wide, centimetre-long, highly aligned single-crystalline organic semiconductor thin films. In particular, we fabricated thin films of 6,13-bis(triisopropylsilylethynyl) pentacene having non-equilibrium single-crystalline domains and an unprecedented average and maximum mobilities of 8.1±1.2 cm(2) V(-1) s(-1) and 11 cm(2) V(-1) s(-1). FLUENCE of organic semiconductors with non-equilibrium single-crystalline domains may find use in the fabrication of high-performance, large-area printed electronics.
Proceedings of the National Academy of Sciences of the United States of America | 2012
Lijia Pan; Guihua Yu; Dongyuan Zhai; Hye Ryoung Lee; Wenting Zhao; Nian Liu; Huiliang Wang; Benjamin C.-K. Tee; Yi Shi; Yi Cui; Zhenan Bao
Conducting polymer hydrogels represent a unique class of materials that synergizes the advantageous features of hydrogels and organic conductors and have been used in many applications such as bioelectronics and energy storage devices. They are often synthesized by polymerizing conductive polymer monomer within a nonconducting hydrogel matrix, resulting in deterioration of their electrical properties. Here, we report a scalable and versatile synthesis of multifunctional polyaniline (PAni) hydrogel with excellent electronic conductivity and electrochemical properties. With high surface area and three-dimensional porous nanostructures, the PAni hydrogels demonstrated potential as high-performance supercapacitor electrodes with high specific capacitance (∼480 F·g-1), unprecedented rate capability, and cycling stability (∼83% capacitance retention after 10,000 cycles). The PAni hydrogels can also function as the active component of glucose oxidase sensors with fast response time (∼0.3 s) and superior sensitivity (∼16.7 μA·mM-1). The scalable synthesis and excellent electrode performance of the PAni hydrogel make it an attractive candidate for bioelectronics and future-generation energy storage electrodes.
Journal of the American Chemical Society | 2012
Hanying Li; Benjamin C.-K. Tee; Judy J. Cha; Yi Cui; Jong Won Chung; Sang Yoon Lee; Zhenan Bao
Field-effect transistors based on single crystals of organic semiconductors have the highest reported charge carrier mobility among organic materials, demonstrating great potential of organic semiconductors for electronic applications. However, single-crystal devices are difficult to fabricate. One of the biggest challenges is to prepare dense arrays of single crystals over large-area substrates with controlled alignment. Here, we describe a solution processing method to grow large arrays of aligned C(60) single crystals. Our well-aligned C(60) single-crystal needles and ribbons show electron mobility as high as 11 cm(2)V(-1)s(-1) (average mobility: 5.2 ± 2.1 cm(2)V(-1)s(-1) from needles; 3.0 ± 0.87 cm(2)V(-1)s(-1) from ribbons). This observed mobility is ~8-fold higher than the maximum reported mobility for solution-grown n-channel organic materials (1.5 cm(2)V(-1)s(-1)) and is ~2-fold higher than the highest mobility of any n-channel organic material (~6 cm(2)V(-1)s(-1)). Furthermore, our deposition method is scalable to a 100 mm wafer substrate, with around 50% of the wafer surface covered by aligned crystals. Hence, our method facilitates the fabrication of large amounts of high-quality semiconductor crystals for fundamental studies, and with substantial improvement on the surface coverage of crystals, this method might be suitable for large-area applications based on single crystals of organic semiconductors.
Science | 2015
Benjamin C.-K. Tee; Alex Chortos; Andre Berndt; Amanda Kim Nguyen; Ariane Tom; Allister F. McGuire; Ziliang Carter Lin; Kevin Tien; Won-Gyu Bae; Huiliang Wang; Ping Mei; Ho-Hsiu Chou; Bianxiao Cui; Karl Deisseroth; Tse Nga Ng; Zhenan Bao
Sensing the force digitally Our skin provides us with a flexible waterproof barrier, but it also contains a sensor array that feels the world around us. This array provides feedback and helps us to avoid a hot object or increase the strength of our grip on an object that may be slipping away. Tee et al. describe an approach to simulate the mechanoreceptors of human skin, using pressure-sensitive foils and printed ring oscillators (see the Perspective by Anikeeva and Koppes). The sensor successfully converted pressure into a digital response in a pressure range comparable to that found in a human grip. Science, this issue p. 313; see also p. 274 An artificial skin based on flexible printed organic circuits and pressure sensors mimics the ability to sense physical force. [Also see Perspective by Anikeeva and Koppes] Human skin relies on cutaneous receptors that output digital signals for tactile sensing in which the intensity of stimulation is converted to a series of voltage pulses. We present a power-efficient skin-inspired mechanoreceptor with a flexible organic transistor circuit that transduces pressure into digital frequency signals directly. The output frequency ranges between 0 and 200 hertz, with a sublinear response to increasing force stimuli that mimics slow-adapting skin mechanoreceptors. The output of the sensors was further used to stimulate optogenetically engineered mouse somatosensory neurons of mouse cortex in vitro, achieving stimulated pulses in accordance with pressure levels. This work represents a step toward the design and use of large-area organic electronic skins with neural-integrated touch feedback for replacement limbs.
Advanced Materials | 2012
Marc Ramuz; Benjamin C.-K. Tee; Jeffrey B.-H. Tok; Zhenan Bao
Optical pressure sensors are highly responsive and are unaffected by surrounding parameters such as electronic noise, humidity, temperature, etc. A new type of optical pressure sensor is described that demonstrates the stretchability and transparency of a polydimethylsiloxane waveguide, while also serving as a substrate. The pressure sensors are both robust and easy to fabricate over a large area.
Nature Communications | 2014
Lisa Y. Chen; Benjamin C.-K. Tee; Alex Chortos; Gregor Schwartz; Victor Tse; Darren J. Lipomi; H.-S. Philip Wong; Michael V. McConnell; Zhenan Bao
Continuous monitoring of internal physiological parameters is essential for critical care patients, but currently can only be practically achieved via tethered solutions. Here we report a wireless, real-time pressure monitoring system with passive, flexible, millimetre-scale sensors, scaled down to unprecedented dimensions of 1 × 1 × 0.1 cubic millimeters. This level of dimensional scaling is enabled by novel sensor design and detection schemes, which overcome the operating frequency limits of traditional strategies and exhibit insensitivity to lossy tissue environments. We demonstrate the use of this system to capture human pulse waveforms wirelessly in real time as well as to monitor in vivo intracranial pressure continuously in proof-of-concept mice studies using sensors down to 2.5 × 2.5 × 0.1 cubic millimeters. We further introduce printable wireless sensor arrays and show their use in real-time spatial pressure mapping. Looking forward, this technology has broader applications in continuous wireless monitoring of multiple physiological parameters for biomedical research and patient care.
Advanced Materials | 2012
Hanying Li; Benjamin C.-K. Tee; Gaurav Giri; Jong Won Chung; Sang Yoon Lee; Zhenan Bao
Constructing a complementary inverter is technically more complex because both pand n-channel transistors are required to be patterned onto a common substrate. Here, we report a simple solution processing method to fabricate complementary inverters based on n-channel C 60 single crystals and p-channel 6,13-bis(triisopropyl-silylethynyl) pentacene (TIPS-pentacene) single crystals. We achieved a signal gain as high as 155. Hence, this work provides a platform to study high-performance complementary circuits based on organic single-crystals. Organic FETs have been widely used for electronic applications such as displays [ 5 , 6 ] and sensors. [ 7–9 ] Organic single-crystals show the best FET performance with the highest charge mobility among organic materials. The p-channel organic single-crystal FETs have exhibited hole mobility as high as 40 cm 2 V − 1 s − 1 , [ 10–14 ]