Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Benjamin D. Medoff is active.

Publication


Featured researches published by Benjamin D. Medoff.


Circulation Research | 1999

Patterns of Vascular Cell Adhesion Molecule-1 and Intercellular Adhesion Molecule-1 Expression in Rabbit and Mouse Atherosclerotic Lesions and at Sites Predisposed to Lesion Formation

Kaeko Iiyama; Leena Hajra; Motoi Iiyama; Hongmei Li; Maria DiChiara; Benjamin D. Medoff; Myron I. Cybulsky

The recruitment of mononuclear leukocytes and formation of intimal macrophage-rich lesions at specific sites of the arterial tree are key events in atherogenesis. Inducible endothelial cell adhesion molecules may participate in this process. In aortas of normal chow-fed wild-type mice and rabbits, vascular cell adhesion molecule-1 (VCAM-1) and intercellular adhesion molecule-1 (ICAM-1), but not E-selectin, were expressed by endothelial cells in regions predisposed to atherosclerotic lesion formation. En face confocal microscopy of the mouse ascending aorta and proximal arch demonstrated that VCAM-1 expression was increased on the endothelial cell surface in lesion-prone areas. ICAM-1 expression extended into areas protected from lesion formation. Hypercholesterolemia induced atherosclerotic lesion formation in rabbits, LDL receptor and apolipoprotein E knockout mice, and Northern blot analysis demonstrated increased steady-state mRNA levels of VCAM-1 and ICAM-1, but not of E-selectin. Immunohistochemical staining revealed that VCAM-1 and ICAM-1 were expressed predominantly by endothelium in early lesions and by intimal cells in more advanced lesions. In early and advanced lesions, staining was most intense in endothelial cells at and adjacent to lesion borders. ICAM-1 staining extended into the uninvolved aorta. These expression patterns were highly reproducible in both species. The only difference was that VCAM-1 expression in endothelium over the central portions of lesions was found frequently in rabbits and rarely in mice. The expression of VCAM-1 by arterial endothelium in normal animals may represent a pathogenic mechanism or a phenotypic marker of predisposition to atherogenesis.


Nature Immunology | 2003

Leukotriene B4 receptor BLT1 mediates early effector T cell recruitment

Andrew M. Tager; Shannon K. Bromley; Benjamin D. Medoff; Sabina A. Islam; Scott D. Bercury; Erik B. Friedrich; Andrew D. Carafone; Robert E. Gerszten; Andrew D. Luster

Leukotriene B4 (LTB4) was originally described as a potent lipid myeloid cell chemoattractant, rapidly generated from innate immune cells, that activates leukocytes through the G protein–coupled receptor BLT1. We report here that BLT1 is expressed on effector CD4+ T cells generated in vitro as well as in vivo when effector T cells migrate out of the lymphoid compartment and are recruited into peripheral tissues. BLT1 mediated LTB4-induced T helper type 1 (TH1) and TH2 cell chemotaxis and firm adhesion to endothelial cells under flow, as well as early CD4+ and CD8+ T cell recruitment into the airway in an asthma model. Our findings show that the LTB4-BLT1 pathway is involved in linking early immune system activation and early effector T cell recruitment.


Nature | 2013

Dedifferentiation of committed epithelial cells into stem cells in vivo

Purushothama Rao Tata; Hongmei Mou; Ana Pardo-Saganta; Rui Zhao; Mythili Prabhu; Brandon M. Law; Vladimir Vinarsky; Josalyn L. Cho; Sylvie Breton; Amar Sahay; Benjamin D. Medoff; Jayaraj Rajagopal

Cellular plasticity contributes to the regenerative capacity of plants, invertebrates, teleost fishes and amphibians. In vertebrates, differentiated cells are known to revert into replicating progenitors, but these cells do not persist as stable stem cells. Here we present evidence that differentiated airway epithelial cells can revert into stable and functional stem cells in vivo. After the ablation of airway stem cells, we observed a surprising increase in the proliferation of committed secretory cells. Subsequent lineage tracing demonstrated that the luminal secretory cells had dedifferentiated into basal stem cells. Dedifferentiated cells were morphologically indistinguishable from stem cells and they functioned as well as their endogenous counterparts in repairing epithelial injury. Single secretory cells clonally dedifferentiated into multipotent stem cells when they were cultured ex vivo without basal stem cells. By contrast, direct contact with a single basal stem cell was sufficient to prevent secretory cell dedifferentiation. In analogy to classical descriptions of amphibian nuclear reprogramming, the propensity of committed cells to dedifferentiate is inversely correlated to their state of maturity. This capacity of committed cells to dedifferentiate into stem cells may have a more general role in the regeneration of many tissues and in multiple disease states, notably cancer.


Journal of Immunology | 2002

IFN-γ-Inducible Protein 10 (CXCL10) Contributes to Airway Hyperreactivity and Airway Inflammation in a Mouse Model of Asthma

Benjamin D. Medoff; Alain Sauty; Andrew M. Tager; James A. MacLean; R. Neal Smith; Anuja Mathew; Jennifer H. Dufour; Andrew D. Luster

Allergic asthma is an inflammatory disease of the airways characterized by eosinophilic inflammation and airway hyper-reactivity. Cytokines and chemokines specific for Th2-type inflammation predominate in asthma and in animal models of this disease. The role of Th1-type inflammatory mediators in asthma remains controversial. IFN-γ-inducible protein 10 (IP-10; CXCL10) is an IFN-γ-inducible chemokine that preferentially attracts activated Th1 lymphocytes. IP-10 is up-regulated in the airways of asthmatics, but its function in asthma is unclear. To investigate the role of IP-10 in allergic airway disease, we examined the expression of IP-10 in a murine model of asthma and the effects of overexpression and deletion of IP-10 in this model using IP-10-transgenic and IP-10-deficient mice. Our experiments demonstrate that IP-10 is up-regulated in the lung after allergen challenge. Mice that overexpress IP-10 in the lung exhibited significantly increased airway hyperreactivity, eosinophilia, IL-4 levels, and CD8+ lymphocyte recruitment compared with wild-type controls. In addition, there was an increase in the percentage of IL-4-secreting T lymphocytes in the lungs of IP-10-transgenic mice. In contrast, mice deficient in IP-10 demonstrated the opposite results compared with wild-type controls, with a significant reduction in these measures of Th2-type allergic airway inflammation. Our results demonstrate that IP-10, a Th1-type chemokine, is up-regulated in allergic pulmonary inflammation and that this contributes to the airway hyperreactivity and Th2-type inflammation seen in this model of asthma.


Annual Review of Immunology | 2008

T Cell Trafficking in Allergic Asthma: The Ins and Outs

Benjamin D. Medoff; Seddon Y. Thomas; Andrew D. Luster

T cells are critical mediators of the allergic airway inflammation seen in asthma. Pathogenic allergen-specific T cells are generated in regional lymph nodes and are then recruited into the airway by chemoattractants produced by the asthmatic lung. These recruited effector T cells and their products then mediate the cardinal features of asthma: airway eosinophilia, mucus hypersecretion, and airway hyperreactivity. There has been considerable progress in delineating the molecular mechanisms that control T cell trafficking into peripheral tissue, including the asthmatic lung. In this review, we summarize these advances and formulate them into a working model that proposes that T cell trafficking into and out of the allergic lung is controlled by several discrete regulatory pathways that involve the collaboration of innate and acquired immune cells.


American Journal of Respiratory Cell and Molecular Biology | 2009

Adiponectin Deficiency Increases Allergic Airway Inflammation and Pulmonary Vascular Remodeling

Benjamin D. Medoff; Yoshihisa Okamoto; Patricio Leyton; Meiqian Weng; Barry P. Sandall; Michael J. Raher; Shinji Kihara; Kenneth D. Bloch; Peter Libby; Andrew D. Luster

Obesity is associated with an increased incidence and severity of asthma, as well as other lung disorders, such as pulmonary hypertension. Adiponectin (APN), an antiinflammatory adipocytokine, circulates at lower levels in the obese, which is thought to contribute to obesity-related inflammatory diseases. We sought to determine the effects of APN deficiency in a murine model of chronic asthma. Allergic airway inflammation was induced in APN-deficient mice (APN(-/-)) using sensitization without adjuvant followed by airway challenge with ovalbumin. The mice were then analyzed for changes in inflammation and lung remodeling. APN(-/-) mice in this model develop increased allergic airway inflammation compared with wild-type mice, with greater accumulation of eosinophils and monocytes in the airways associated with elevated lung chemokine levels. Surprisingly, APN(-/-) mice developed severe pulmonary arterial muscularization and pulmonary arterial hypertension in this model, whereas wild-type mice had only mild vascular remodeling and comparatively less pulmonary arterial hypertension. Our findings demonstrate that APN modulates allergic inflammation and pulmonary vascular remodeling in a model of chronic asthma. These data provide a possible mechanism for the association between obesity and asthma, and suggest a potential novel link between obesity, inflammatory lung disease, and pulmonary hypertension.


Critical Care Medicine | 2000

Use of recruitment maneuvers and high-positive end-expiratory pressure in a patient with acute respiratory distress syndrome.

Benjamin D. Medoff; R. S. Harris; H. Kesselman; Jose G. Venegas; Marcelo B. P. Amato; Dean R. Hess

Objective: To present the use of a novel high‐pressure recruitment maneuver followed by high levels of positive end‐expiratory pressure in a patient with the acute respiratory distress syndrome (ARDS). Design: Observations in one patient. Setting: The medical intensive care unit at a tertiary care university teaching hospital. Patient: A 32‐yr‐old woman with severe ARDS secondary to streptococcal sepsis. Interventions: The patient had severe gas exchange abnormalities because of acute lung injury and marked lung collapse. Attempts to optimize recruitment based on the inflation pressure‐volume (PV) curve were not sufficient to avoid dependent lung collapse. We used a recruitment maneuver using 40 cm H2O of positive end‐expiratory pressure (PEEP) and 20 cm H2O of pressure controlled ventilation above PEEP for 2 mins to successfully recruit the lung. The recruitment was maintained with 25 cm H2O of PEEP, which was much higher than the PEEP predicted by the lower inflection point (PFlex) of the PV curve. Measurements and Main Results: Recruitment was assessed by improvements in oxygenation and by computed tomography of the chest. With the recruitment maneuvers, the patient had a dramatic improvement in gas exchange and we were able to demonstrate nearly complete recruitment of the lung by computed tomography. A PV curve was measured that demonstrated a PFlex of 16‐18 cm H2O. Conclusion: Accumulating data suggest that the maximization and maintenance of lung recruitment may reduce lung parenchymal injury from positive pressure ventilation in ARDS. We demonstrate that in this case PEEP alone was not adequate to recruit the injured lung and that a high‐pressure recruitment maneuver was required. After recruitment, high‐level PEEP was needed to prevent derecruitment and this level of PEEP was not adequately predicted by the PFlex of the PV curve.


Proceedings of the National Academy of Sciences of the United States of America | 2008

The Nore1B/Mst1 complex restrains antigen receptor-induced proliferation of naïve T cells

Dawang Zhou; Benjamin D. Medoff; Lanfen Chen; Lequn Li; Xian-feng Zhang; Maria Praskova; Matthew Liu; Aimee Landry; Richard S. Blumberg; Vassiliki A. Boussiotis; Ramnik J. Xavier; Joseph Avruch

The Mst1 and Mst2 protein kinases are the mammalian homologs of hippo, a major inhibitor of cell proliferation in Drosophila. Mst1 is most abundant in lymphoid tissues. Mice lacking Mst1 exhibit markedly reduced levels of the Mst1 regulatory protein Nore1B/RAPL in lymphoid cells, whereas Mst2 abundance is unaltered. Mst1-null mice exhibit normal T cell development but low numbers of mature naïve T cells with relatively normal numbers of effector/memory T cells. In vitro, the Mst1-deficient naïve T cells exhibit markedly greater proliferation in response to stimulation of the T cell receptor whereas the proliferative responses of the Mst1-null effector/memory T cell cohort is similar to wild type. Thus, elimination of Mst1 removes a barrier to the activation and proliferative response of naïve T cells. The levels of Mst1 and Nore1B/RAPL in wild-type effector/memory T cells are approximately 10% those seen in wild-type naïve T cells, which may contribute to the enhanced proliferative responses of the former. Freshly isolated Mst1-null T cells exhibit high rates of ongoing apoptosis, a likely basis for their low numbers in vivo; they also exhibit defective clustering of LFA-1, as previously observed for Nore1B/RAPL-deficient T cells. Among known Mst1 substrates, only the phosphorylation of the cell cycle inhibitory proteins MOBKL1A/B is lost entirely in TCR-stimulated, Mst1-deficient T cells. Mst1/2-catalyzed MOBKL1A/B phosphorylation slows proliferation and is therefore a likely contributor to the anti-proliferative action of Mst1 in naïve T cells. The Nore1B/RAPL-Mst1 complex is a negative regulator of naïve T cell proliferation.


Journal of Immunology | 2007

Multiple Chemokine Receptors, Including CCR6 and CXCR3, Regulate Antigen-Induced T Cell Homing to the Human Asthmatic Airway

Seddon Y. Thomas; Aleena Banerji; Benjamin D. Medoff; Craig M. Lilly; Andrew D. Luster

Human allergic asthma is a chronic inflammatory disease of the airways thought to be driven by allergen-specific Th2 cells, which are recruited into the lung in response to inhaled allergen. To identify chemoattractant receptors that control this homing pattern, we used endobronchial segmental allergen challenge in human atopic asthmatics to define the pattern of chemoattractant receptor expression on recruited T cells as well as the numbers of recruited CD1d-restricted NKT cells and levels of chemokines in the bronchoalveolar (BAL) fluid. CD1d-restricted NKT cells comprised only a small minority of BAL T cells before or after Ag challenge. BAL T cells were enriched in their expression of specific chemoattractant receptors compared with peripheral blood T cells prechallenge, including CCR5, CCR6, CXCR3, CXCR4, and BLT1. Surprisingly, following segmental allergen challenge, no chemoattractant receptor was specifically increased. However, CCR6 and CXCR3, which were expressed on virtually all CD4+ BAL T cells prechallenge, were markedly decreased on all recruited BAL T cells following Ag challenge, suggesting that these receptors were internalized following encounter with ligand in the airway. Our data therefore suggests a role for CCR6 and CXCR3, in conjunction with other chemoattractant receptors, in the recruitment of inflammatory T cells into the BAL during the allergic asthmatic response.


Journal of Immunology | 2006

Oligomerization of CXCL10 Is Necessary for Endothelial Cell Presentation and In Vivo Activity

Gabriele S. V. Campanella; Jan Grimm; Lindsay A. Manice; Richard A. Colvin; Benjamin D. Medoff; Gregory R. Wojtkiewicz; Ralph Weissleder; Andrew D. Luster

The chemokine IFN-γ-inducible protein of 10 kDa (IP-10; CXCL10) plays an important role in the recruitment of activated T lymphocytes into sites of inflammation by interacting with the G protein-coupled receptor CXCR3. IP-10, like other chemokines, forms oligomers, the role of which has not yet been explored. In this study, we used a monomeric IP-10 mutant to elucidate the functional significance of oligomerization. Although monomeric IP-10 had reduced binding affinity for CXCR3 and heparin, it was able to induce in vitro chemotaxis of activated T cells with the same efficacy as wild-type IP-10. However, monomeric IP-10 was unable to induce recruitment of activated CD8+ T cells into the airways of mice after intratracheal instillation. Use of a different IP-10 mutant demonstrated that this inability was due to lack of oligomerization rather than reduced CXCR3 or heparin binding. Molecular imaging demonstrated that both wild-type and monomeric IP-10 were retained in the lung after intratracheal instillation. However, in vitro binding assays indicated that wild-type, but not monomeric, IP-10 was retained on endothelial cells and could induce transendothelial chemotaxis of activated T cells. We therefore propose that oligomerization of IP-10 is required for presentation on endothelial cells and subsequent transendothelial migration, an essential step for lymphocyte recruitment in vivo.

Collaboration


Dive into the Benjamin D. Medoff's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge