Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Benjamin Kefas is active.

Publication


Featured researches published by Benjamin Kefas.


Cancer Research | 2008

microRNA-7 Inhibits the Epidermal Growth Factor Receptor and the Akt Pathway and Is Down-regulated in Glioblastoma

Benjamin Kefas; Jakub Godlewski; Laurey Comeau; Yunqing Li; Roger Abounader; Michael P. Hawkinson; Jeongwu Lee; Howard A. Fine; E. Antonio Chiocca; Sean E. Lawler; Benjamin Purow

microRNAs are noncoding RNAs inhibiting expression of numerous target genes, and a few have been shown to act as oncogenes or tumor suppressors. We show that microRNA-7 (miR-7) is a potential tumor suppressor in glioblastoma targeting critical cancer pathways. miR-7 potently suppressed epidermal growth factor receptor expression, and furthermore it independently inhibited the Akt pathway via targeting upstream regulators. miR-7 expression was down-regulated in glioblastoma versus surrounding brain, with a mechanism involving impaired processing. Importantly, transfection with miR-7 decreased viability and invasiveness of primary glioblastoma lines. This study establishes miR-7 as a regulator of major cancer pathways and suggests that it has therapeutic potential for glioblastoma.


The Journal of Neuroscience | 2009

The neuronal microRNA miR-326 acts in a feedback loop with Notch and has therapeutic potential against brain tumors

Benjamin Kefas; Laurey Comeau; Desiree H. Floyd; Oleksandr Seleverstov; Jakub Godlewski; Tom Schmittgen; Jinmai Jiang; Charles G. diPierro; Yunqing Li; E. Antonio Chiocca; Jeongwu Lee; Howard A. Fine; Roger Abounader; Sean E. Lawler; Benjamin Purow

Little is known of microRNA interactions with cellular pathways. Few reports have associated microRNAs with the Notch pathway, which plays key roles in nervous system development and in brain tumors. We previously implicated the Notch pathway in gliomas, the most common and aggressive brain tumors. While investigating Notch mediators, we noted microRNA-326 was upregulated following Notch-1 knockdown. This neuronally expressed microRNA was not only suppressed by Notch but also inhibited Notch proteins and activity, indicating a feedback loop. MicroRNA-326 was downregulated in gliomas via decreased expression of its host gene. Transfection of microRNA-326 into both established and stem cell-like glioma lines was cytotoxic, and rescue was obtained with Notch restoration. Furthermore, miR-326 transfection reduced glioma cell tumorigenicity in vivo. Additionally, we found microRNA-326 partially mediated the toxic effects of Notch knockdown. This work demonstrates a microRNA-326/Notch axis, shedding light on the biology of Notch and suggesting microRNA-326 delivery as a therapy.


Neuro-oncology | 2010

Pyruvate kinase M2 is a target of the tumor-suppressive microRNA-326 and regulates the survival of glioma cells

Benjamin Kefas; Laurey Comeau; Nicholas Erdle; Emmitt Montgomery; Samson Amos; Benjamin Purow

Emerging studies have identified microRNAs (miRNAs) as possible therapeutic tools for the treatment of glioma, the most aggressive brain tumor. Their important targets in this tumor are not well understood. We recently found that the Notch pathway is a target of miRNA-326. Ectopic expression of miRNA-326 in glioma and glioma stem cells induced their apoptosis and reduced their metabolic activity. Computational target gene prediction revealed pyruvate kinase type M2 (PKM2) as another target of miRNA-326. PKM2 has recently been shown to play a key role in cancer cell metabolism. To investigate whether it might be a functionally important target of miR-326, we used RNA interference to knockdown PKM2 expression in glioma cells. Transfection of the established glioma and glioma stem cells with PKM2 siRNA reduced their growth, cellular invasion, metabolic activity, ATP and glutathione levels, and activated AMP-activated protein kinase. The cytotoxic effects exhibited by PKM2 knockdown in glioma and glioma stem cells were not observed in transformed human astrocytes. Western blot analysis of human glioblastoma specimens showed high levels of PKM2 protein, but none was observed in normal brain samples. Strikingly, cells with high levels of PKM2 expressed lower levels of miR-326, suggestive of endogenous regulation of PKM2 by miR-326. Our data suggest PKM2 inhibition as a therapy for glioblastoma, with the potential for minimal toxicity to the brain.


Carcinogenesis | 2008

Notch-1 regulates transcription of the epidermal growth factor receptor through p53

Benjamin Purow; Tilak K. Sundaresan; Michael J. Burdick; Benjamin Kefas; Laurey Comeau; Michael P. Hawkinson; Qin Su; Yuri Kotliarov; Jeongwu Lee; Wei Zhang; Howard A. Fine

The Notch pathway plays a key role in the development and is increasingly recognized for its importance in cancer. We demonstrated previously the overexpression of Notch-1 and its ligands in gliomas and showed that their knockdown inhibits glioma cell proliferation and survival. To elucidate the mechanisms downstream of Notch-1 in glioma cells, we performed microarray profiling of glioma cells transfected with Notch-1 small interfering RNA. Notable among downregulated transcripts was the epidermal growth factor receptor (EGFR), known to be overexpressed or amplified in gliomas and prominent in other cancers as well. Further studies confirmed that Notch-1 inhibition decreased EGFR messenger RNA (mRNA) and EGFR protein in glioma and other cell lines. Transfection with Notch-1 increased EGFR expression. Additionally, we found a significant correlation in levels of EGFR and Notch-1 mRNA in primary high-grade human gliomas. Subsequent experiments showed that p53, an activator of the EGFR promoter, is regulated by Notch-1. Experiments with p53-positive and -null cell lines confirmed that p53 partially mediates the effects of Notch-1 on EGFR expression. These results show for the first time that Notch-1 upregulates EGFR expression and also demonstrate Notch-1 regulation of p53 in gliomas. These observations have significant implications for understanding the mechanisms of Notch in cancer and development.


Journal of Neuro-oncology | 2013

Oncogenic effects of miR-10b in glioblastoma stem cells

Fadila Guessous; Melissa Alvarado-Velez; Lukasz Marcinkiewicz; Ying Zhang; Jungeun Kim; Simon Heister; Benjamin Kefas; Jakub Godlewski; David Schiff; Benjamin Purow; Roger Abounader

MicroRNAs and cancer stem cells have emerged as critical players in glioblastoma, one of the deadliest human cancers. In this study, we investigated the expression and function of microRNA-10b in glioblastoma cells and stem cells. An analysis of The Cancer Genome Atlas data revealed a correlation between high miR-10b levels and poor prognosis in glioblastoma patients. We measured the levels of miR-10b and found that it is upregulated in human glioblastoma tissues, glioblastoma cell and stem cell lines as compared to normal human tissues or astrocytes. Inhibition of miR-10b with a specific antagomir inhibited the proliferation of glioblastoma established and stem cell lines. Inhibition of miR-10b strongly reduced cell invasion and migration in glioblastoma cell and stem cell lines while overexpression of miR-10b induced cell migration and invasion. We also investigated several predicted targets of miR-10b but could not verify any of them experimentally. Additionally, miR-10b inhibition significantly decreased the in vivo growth of stem cell-derived orthotopic GBM xenografts. Altogether, our findings confirm the oncogenic effects of miR-10b in GBM cells and show for the first time a role of this microRNA in GBM stem cells. Targeting miR-10b might therefore inhibit glioblastoma stem cells, which are thought to be at the origin of glioblastoma and to contribute its recurrence and resistance to therapy.


Cancer Research | 2014

microRNA-148a Is a Prognostic oncomiR That Targets MIG6 and BIM to Regulate EGFR and Apoptosis in Glioblastoma

Jungeun Kim; Ying Zhang; Michael Skalski; Josie Hayes; Benjamin Kefas; David Schiff; Benjamin Purow; Sarah J. Parsons; Sean E. Lawler; Roger Abounader

Great interest persists in useful prognostic and therapeutic targets in glioblastoma. In this study, we report the definition of miRNA (miR)-148a as a novel prognostic oncomiR in glioblastoma. miR-148a expression was elevated in human glioblastoma specimens, cell lines, and stem cells (GSC) compared with normal human brain and astrocytes. High levels were a risk indicator for glioblastoma patient survival. Functionally, miR-148a expression increased cell growth, survival, migration, and invasion in glioblastoma cells and GSCs and promoted GSC neurosphere formation. Two direct targets of miR-148a were identified, the EGF receptor (EGFR) regulator MIG6 and the apoptosis regulator BIM, which rescue experiments showed were essential to mediate the oncogenic activity of miR-148a. By inhibiting MIG6 expression, miR-148a reduced EGFR trafficking to Rab7-expressing compartments, which includes late endosomes and lysosomes. This process coincided with reduced degradation and elevated expression and activation of EGFR. Finally, inhibition of miR-148a strongly suppressed GSC and glioblastoma xenograft growth in vivo. Taken together, our findings provide a comprehensive analysis of the prognostic value and oncogenic function of miR-148a in glioblastoma, further defining it as a potential target for glioblastoma therapy.


Cancer Discovery | 2013

Diacylglycerol kinase alpha is a critical signaling node and novel therapeutic target in glioblastoma and other cancers

Charli Dominguez; Desiree H. Floyd; Aizhen Xiao; Garrett R. Mullins; Benjamin Kefas; Wenjun Xin; Melissa N. Yacur; Roger Abounader; Jae K. Lee; Gabriela Mustata Wilson; Thurl E. Harris; Benjamin Purow

Although diacylglycerol kinase α (DGKα) has been linked to several signaling pathways related to cancer cell biology, it has been neglected as a target for cancer therapy. The attenuation of DGKα activity via DGKα-targeting siRNA and small-molecule inhibitors R59022 and R59949 induced caspase-mediated apoptosis in glioblastoma cells and in other cancers, but lacked toxicity in noncancerous cells. We determined that mTOR and hypoxia-inducible factor-1α (HIF-1α) are key targets of DGKα inhibition, in addition to its regulation of other oncogenes. DGKα regulates mTOR transcription via a unique pathway involving cyclic AMP. Finally, we showed the efficacy of DGKα inhibition with short hairpin RNA or a small-molecule agent in glioblastoma and melanoma xenograft treatment models, with growth delay and decreased vascularity. This study establishes DGKα as a central signaling hub and a promising therapeutic target in the treatment of cancer.


PLOS ONE | 2014

Novel Anti-Apoptotic MicroRNAs 582-5p and 363 Promote Human Glioblastoma Stem Cell Survival via Direct Inhibition of Caspase 3, Caspase 9, and Bim

Desiree H. Floyd; Ying Zhang; Bijan K. Dey; Benjamin Kefas; Hannah Breit; Kaitlyn Marks; Anindya Dutta; Christel Herold-Mende; Michael Synowitz; Rainer Glass; Roger Abounader; Benjamin Purow

Glioblastoma is the most common and lethal primary brain tumor. Tumor initiation and recurrence are likely caused by a sub-population of glioblastoma stem cells, which may derive from mutated neural stem and precursor cells. Since CD133 is a stem cell marker for both normal brain and glioblastoma, and to better understand glioblastoma formation and recurrence, we looked for dys-regulated microRNAs in human CD133+ glioblastoma stem cells as opposed to CD133+ neural stem cells isolated from normal human brain. Using FACS sorting of low-passage cell samples followed by microRNA microarray analysis, we found 43 microRNAs that were dys-regulated in common in three separate CD133+ human glioblastomas compared to CD133+ normal neural stem cells. Among these were several microRNAs not previously associated with cancer. We then verified the microRNAs dys-regulated in glioblastoma using quantitative real time PCR and Taqman analysis of the original samples, as well as human GBM stem cell and established cell lines and many human specimens. We show that two candidate oncogenic microRNAs, miR-363 and miR-582-5p, can positively influence glioblastoma survival, as shown by forced expression of the microRNAs and their inhibitors followed by cell number assay, Caspase 3/7 assay, Annexin V apoptosis/fluorescence activated cell sorting, siRNA rescue of microRNA inhibitor treatment, as well as 3′UTR mutagenesis to show luciferase reporter rescue of the most successful targets. miR-582-5p and miR-363 are shown to directly target Caspase 3, Caspase 9, and Bim.


Journal of Biological Chemistry | 2011

Usp18 Regulates Epidermal Growth Factor (EGF) Receptor Expression and Cancer Cell Survival via MicroRNA-7

Jason E. Duex; Laurey Comeau; Alexander Sorkin; Benjamin Purow; Benjamin Kefas

Epidermal growth factor receptor (EGFR) is involved in development and progression of many human cancers. We have previously demonstrated that the ubiquitin-specific peptidase Usp18 (Ubp43) is a potent regulator of EGFR protein expression. Here we report that the 3′-untranslated region (3′-UTR) of the EGFR message modulates RNA translation following cell treatment with Usp18 siRNA, suggesting microRNA as a possible mediator. Given earlier evidence of EGFR regulation by the microRNA miR-7, we assessed whether miR-7 mediates Usp18 siRNA effects. We found that Usp18 depletion elevates miR-7 levels in several cancer cell lines because of a transcriptional activation and/or mRNA stabilization of miR-7 host genes and that miR-7 acts downstream of Usp18 to regulate EGFR mRNA translation via the 3′-UTR. Also, depletion of Usp18 led to a decrease in protein levels of other known oncogenic targets of miR-7, reduced cell proliferation and soft agar colony formation, and increased apoptosis. Notably, all of these phenotypes were reversed by a specific inhibitor of miR-7. Thus, our findings support a model in which Usp18 inhibition promotes up-regulation of miR-7, which in turn inhibits EGFR expression and the tumorigenic activity of cancer cells.


Molecular Cancer Therapeutics | 2009

Interactions between PTEN and the c-Met pathway in glioblastoma and implications for therapy.

Yunqing Li; Fadila Guessous; Charles G. diPierro; Ying Zhang; Tucker Mudrick; Lauren Fuller; Elizabeth Johnson; Lukasz Marcinkiewicz; Matthew Engelhardt; Benjamin Kefas; David Schiff; Jin Kim; Roger Abounader

The tyrosine kinase receptor c-Met and its ligand hepatocyte growth factor (HGF) are frequently overexpressed and the tumor suppressor PTEN is often mutated in glioblastoma. Because PTEN can interact with c-Met-dependent signaling, we studied the effects of PTEN on c-Met-induced malignancy and associated molecular events and assessed the potential therapeutic value of combining PTEN restoration approaches with HGF/c-Met inhibition. We studied the effects of c-Met activation on cell proliferation, cell cycle progression, cell migration, cell invasion, and associated molecular events in the settings of restored or inhibited PTEN expression in glioblastoma cells. We also assessed the experimental therapeutic effects of combining anti-HGF/c-Met approaches with PTEN restoration or mTOR inhibition. PTEN significantly inhibited HGF-induced proliferation, cell cycle progression, migration, and invasion of glioblastoma cells. PTEN attenuated HGF-induced changes of signal transduction proteins Akt, GSK-3, JNK, and mTOR as well as cell cycle regulatory proteins p27, cyclin E, and E2F-1. Combining PTEN restoration to PTEN-null glioblastoma cells with c-Met and HGF inhibition additively inhibited tumor cell proliferation and cell cycle progression. Similarly, combining a monoclonal anti-HGF antibody (L2G7) with the mTOR inhibitor rapamycin had additive inhibitory effects on glioblastoma cell proliferation. Systemic in vivo delivery of L2G7 and PTEN restoration as well as systemic in vivo deliveries of L2G7 and rapamycin additively inhibited intracranial glioma xenograft growth. These preclinical studies show for the first time that PTEN loss amplifies c-Met-induced glioblastoma malignancy and suggest that combining anti-HGF/c-Met approaches with PTEN restoration or mTOR inhibition is worth testing in a clinical setting. [Mol Cancer Ther 2009;8(2):376–85]

Collaboration


Dive into the Benjamin Kefas's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ying Zhang

University of Virginia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yunqing Li

Johns Hopkins University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge