Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Fadila Guessous is active.

Publication


Featured researches published by Fadila Guessous.


Cell Cycle | 2010

microRNA-34a is tumor suppressive in brain tumors and glioma stem cells

Fadila Guessous; Ying Zhang; Alexander Kofman; Alessia Catania; Yunqing Li; David Schiff; Benjamin Purow; Roger Abounader

We recently found that microRNA-34a (miR-34a) is downregulated in human glioma tumors as compared to normal brain, and that miR-34a levels in mutant-p53 gliomas were lower than in wildtype-p53 tumors. We showed that miR-34a expression in glioma and medulloblastoma cells inhibits cell proliferation, G1/S cell cycle progression, cell survival, cell migration and cell invasion, but that miR-34a expression in human astrocytes does not affect cell survival and cell cycle. We uncovered the oncogenes c-Met, Notch-1 and Notch-2 as direct targets of miR-34a that are inhibited by miR-34a transfection. We found that c-Met levels in human glioma specimens inversely correlate with miR-34a levels. We showed that c-Met and Notch partially mediate the inhibitory effects of miR-34a on cell proliferation and cell death. We also found that mir-34a expression inhibits in vivo glioma xenograft growth. We concluded that miR-34a is a potential tumor suppressor in brain tumors that acts by targeting multiple oncogenes. In this extra view, we briefly review and discuss the implications of these findings and present new data on the effects of miR-34a in glioma stem cells. The new data show that miR-34a expression inhibits various malignancy endpoints in glioma stem cells. Importantly, they also show for the first time that miR-34a expression induces glioma stem cell differentiation. Altogether, the data suggest that miR-34a is a tumor suppressor and a potential potent therapeutic agent that acts by targeting multiple oncogenic pathways in brain tumors and by inducing the differentiation of cancer stem cells.


Journal of Neuro-oncology | 2013

Oncogenic effects of miR-10b in glioblastoma stem cells

Fadila Guessous; Melissa Alvarado-Velez; Lukasz Marcinkiewicz; Ying Zhang; Jungeun Kim; Simon Heister; Benjamin Kefas; Jakub Godlewski; David Schiff; Benjamin Purow; Roger Abounader

MicroRNAs and cancer stem cells have emerged as critical players in glioblastoma, one of the deadliest human cancers. In this study, we investigated the expression and function of microRNA-10b in glioblastoma cells and stem cells. An analysis of The Cancer Genome Atlas data revealed a correlation between high miR-10b levels and poor prognosis in glioblastoma patients. We measured the levels of miR-10b and found that it is upregulated in human glioblastoma tissues, glioblastoma cell and stem cell lines as compared to normal human tissues or astrocytes. Inhibition of miR-10b with a specific antagomir inhibited the proliferation of glioblastoma established and stem cell lines. Inhibition of miR-10b strongly reduced cell invasion and migration in glioblastoma cell and stem cell lines while overexpression of miR-10b induced cell migration and invasion. We also investigated several predicted targets of miR-10b but could not verify any of them experimentally. Additionally, miR-10b inhibition significantly decreased the in vivo growth of stem cell-derived orthotopic GBM xenografts. Altogether, our findings confirm the oncogenic effects of miR-10b in GBM cells and show for the first time a role of this microRNA in GBM stem cells. Targeting miR-10b might therefore inhibit glioblastoma stem cells, which are thought to be at the origin of glioblastoma and to contribute its recurrence and resistance to therapy.


Journal of Cellular Physiology | 2008

Signaling pathways in medulloblastoma

Fadila Guessous; Yunqing Li; Roger Abounader

Medulloblastoma is the most common brain tumor of childhood. Multiple signaling pathways have been associated with medulloblastoma formation and growth. These include the developmental pathways Hedgehog, (Hh) Notch, and Wnt as well as the receptor tyrosine kinases (RTK) c‐Met, erbB2, IGF‐R and TrkC, and the oncoprotein Myc. Here we review the involvement of these pathways in medulloblastoma malignancy with a focus on their mode of deregulation, prognostic value, functional effects, cellular and molecular mechanisms of action, and implications for therapy. J. Cell. Physiol. 217: 577–583, 2008.


Cancer Research | 2008

PTEN has tumor-promoting properties in the setting of gain-of-function p53 mutations.

Yunqing Li; Fadila Guessous; Sherwin Kwon; Manish Kumar; Opeyemi Ibidapo; Lauren Fuller; Elizabeth Johnson; Bachchu Lal; Isa M. Hussaini; Yongde Bao; John Laterra; David Schiff; Roger Abounader

We show, for the first time, that the tumor suppressor PTEN can have tumor-promoting properties. We show that PTEN acquires these unexpected properties by enhancing gain-of-function mutant p53 (mut-p53) protein levels. We find that PTEN restoration to cells harboring mut-p53 leads to induction of G(1)-S cell cycle progression and cell proliferation and to inhibition of cell death. Conversely, PTEN inhibition in cells expressing wild-type PTEN and mut-p53 leads to inhibition of cell proliferation and inhibition of in vivo tumor growth. We show the dependency of the tumor-promoting effects of PTEN on mut-p53 by showing that knockdown of mut-p53 expression inhibits or reverses the tumor-promoting effects of PTEN. Mechanistically, we show that PTEN expression enhances mut-p53 protein levels via inhibition of mut-p53 degradation by Mdm2 and possibly also via direct protein binding. These findings describe a novel function of PTEN and have important implications for experimental and therapeutic strategies that aim at manipulating PTEN or p53 in human tumors. They suggest that the mutational status of PTEN and p53 should be considered to achieve favorable therapeutic outcomes. The findings also provide an explanation for the low frequency of simultaneous mutations of PTEN and p53 in human cancer.


Laboratory Investigation | 2008

Functional and molecular interactions between the HGF/c-Met pathway and c-Myc in large-cell medulloblastoma

Yunqing Li; Fadila Guessous; Elizabeth Johnson; Charles G. Eberhart; Xiao-Nan Li; Qing Shu; Shongshan Fan; Bachchu Lal; John Laterra; David Schiff; Roger Abounader

The growth factor hepatocyte growth factor (HGF), also known as scatter factor, and its tyrosine kinase receptor c-Met play important roles in medulloblastoma malignancy. The transcription factor c-Myc is another contributor to the malignancy of these most common pediatric brain tumors. In the present study, we observed strong morphological similarities between medulloblastoma xenografts overexpressing HGF and medulloblastoma xenografts overexpressing c-Myc. We therefore hypothesized a biologically significant link between HGF/c-Met and c-Myc in medulloblastoma malignancy and studied the molecular and functional interactions between them. We found that HGF induces c-Myc mRNA and protein in established and primary medulloblastoma cells. HGF regulated c-Myc levels via transcriptional and post-transcriptional mechanisms as evidenced by HGF induction of c-Myc promoter activity and induction of c-Myc protein levels in the setting of inhibited transcription and translation. We also found that HGF induces cell cycle progression, cell proliferation, apoptosis and increase in cell size in a c-Myc-dependent manner. Activation of MAPK and PI3K, inhibition of GSK-3β and translocation of β-catenin to the nucleus as well as Tcf/Lef transcriptional activity were involved in mediating c-Myc induction by HGF. Induction of Cdk2 kinase activity was involved in mediating the cell cycle progression effects, and downregulation of Bcl-XL was involved in mediating the proapoptotic effects of HGF downstream of c-Myc. All molecules that mediated the effects of HGF on c-Myc expression, cell proliferation and apoptosis were expressed in human large-cell medulloblastoma tissues. We therefore established for the first time a functional cooperation between HGF/c-Met and c-Myc in human medulloblastoma and elucidated the molecular mechanisms of this cooperation. The findings provide a potential explanation for the high frequency of c-Myc overexpression in medulloblastoma and suggest a cooperative role for c-Met and c-Myc in large-cell anaplastic medulloblastoma formation.


Anti-cancer Agents in Medicinal Chemistry | 2010

An orally bioavailable c-Met kinase inhibitor potently inhibits brain tumor malignancy and growth.

Fadila Guessous; Ying Zhang; Charles G. diPierro; Lukasz Marcinkiewicz; Jann N. Sarkaria; David Schiff; Sean Buchanan; Roger Abounader

The receptor tyrosine kinase, c-Met and its ligand hepatocyte growth factor (HGF) are important regulators of malignancy in human cancer including brain tumors. c-Met is frequently activated in brain tumors and has emerged as a promising target for molecular therapies. Recently, an orally bioavailable small molecule kinase inhibitor of c-Met (SGX523) was developed by SGX Pharmaceuticals. We tested the effects of this inhibitor on c-Met brain tumor cell activation, c-Met-dependent malignancy, and in vivo glioma xenograft growth. SGX523 potently inhibited c-Met activation and c-Met-dependent signaling at nanomolar concentrations in glioma cells, primary gliomas, glioma stem cells and medulloblastoma cells. SGX523 treatment inhibited c-Met-dependent brain tumor cell proliferation and G1/S cell cycle progression. SGX523 also inhibited brain tumor cell migration and invasion. Furthermore, systemic delivery of SGX523 via oral gavage to mice bearing orthotopic human glioblastoma xenografts led to a significant decrease of in vivo tumor growth. These studies show that c-Met activation and c-Met-dependent brain tumor cell and stem cell malignancy can be inhibited by small molecules. The study also shows for the first time that oral delivery of a small molecule kinase inhibitor of c-Met inhibits intracranial tumor growth. These findings suggest that targeting c-Met with small molecule kinase inhibitors is a promising approach for brain tumor therapy.


Molecular Cancer Therapeutics | 2009

Interactions between PTEN and the c-Met pathway in glioblastoma and implications for therapy.

Yunqing Li; Fadila Guessous; Charles G. diPierro; Ying Zhang; Tucker Mudrick; Lauren Fuller; Elizabeth Johnson; Lukasz Marcinkiewicz; Matthew Engelhardt; Benjamin Kefas; David Schiff; Jin Kim; Roger Abounader

The tyrosine kinase receptor c-Met and its ligand hepatocyte growth factor (HGF) are frequently overexpressed and the tumor suppressor PTEN is often mutated in glioblastoma. Because PTEN can interact with c-Met-dependent signaling, we studied the effects of PTEN on c-Met-induced malignancy and associated molecular events and assessed the potential therapeutic value of combining PTEN restoration approaches with HGF/c-Met inhibition. We studied the effects of c-Met activation on cell proliferation, cell cycle progression, cell migration, cell invasion, and associated molecular events in the settings of restored or inhibited PTEN expression in glioblastoma cells. We also assessed the experimental therapeutic effects of combining anti-HGF/c-Met approaches with PTEN restoration or mTOR inhibition. PTEN significantly inhibited HGF-induced proliferation, cell cycle progression, migration, and invasion of glioblastoma cells. PTEN attenuated HGF-induced changes of signal transduction proteins Akt, GSK-3, JNK, and mTOR as well as cell cycle regulatory proteins p27, cyclin E, and E2F-1. Combining PTEN restoration to PTEN-null glioblastoma cells with c-Met and HGF inhibition additively inhibited tumor cell proliferation and cell cycle progression. Similarly, combining a monoclonal anti-HGF antibody (L2G7) with the mTOR inhibitor rapamycin had additive inhibitory effects on glioblastoma cell proliferation. Systemic in vivo delivery of L2G7 and PTEN restoration as well as systemic in vivo deliveries of L2G7 and rapamycin additively inhibited intracranial glioma xenograft growth. These preclinical studies show for the first time that PTEN loss amplifies c-Met-induced glioblastoma malignancy and suggest that combining anti-HGF/c-Met approaches with PTEN restoration or mTOR inhibition is worth testing in a clinical setting. [Mol Cancer Ther 2009;8(2):376–85]


Clinical Cancer Research | 2013

Hepatocyte Growth Factor Sensitizes Brain Tumors to c-MET Kinase Inhibition

Ying Zhang; Kaitlyn Farenholtz; Yanzhi Yang; Fadila Guessous; Charles G. diPierro; Valerie S. Calvert; Jianghong Deng; David Schiff; Wenjun Xin; Jae K. Lee; Benjamin Purow; James G. Christensen; Emanuel F. Petricoin; Roger Abounader

Purpose: The receptor tyrosine kinase (RTK) c-MET and its ligand hepatocyte growth factor (HGF) are deregulated and promote malignancy in cancer and brain tumors. Consequently, clinically applicable c-MET inhibitors have been developed. The purpose of this study was to investigate the not-well-known molecular determinants that predict responsiveness to c-MET inhibitors and to explore new strategies for improving inhibitor efficacy in brain tumors. Experimental Design: We investigated the molecular factors and pathway activation signatures that determine sensitivity to c-MET inhibitors in a panel of glioblastoma and medulloblastoma cells, glioblastoma stem cells, and established cell line–derived xenografts using functional assays, reverse protein microarrays, and in vivo tumor volume measurements, but validation with animal survival analyses remains to be done. We also explored new approaches for improving the efficacy of the inhibitors in vitro and in vivo. Results: We found that HGF coexpression is a key predictor of response to c-MET inhibition among the examined factors and identified an ERK/JAK/p53 pathway activation signature that differentiates c-MET inhibition in responsive and nonresponsive cells. Surprisingly, we also found that short pretreatment of cells and tumors with exogenous HGF moderately but statistically significantly enhanced the antitumor effects of c-MET inhibition. We observed a similar ligand-induced sensitization effect to an EGF receptor small-molecule kinase inhibitor. Conclusions: These findings allow the identification of a subset of patients that will be responsive to c-MET inhibition and propose ligand pretreatment as a potential new strategy for improving the anticancer efficacy of RTK inhibitors. Clin Cancer Res; 19(6); 1433–44. ©2013 AACR.


Molecular Cancer Therapeutics | 2012

Cooperation between c-Met and focal adhesion kinase family members in medulloblastoma and implications for therapy

Fadila Guessous; Yanzhi Yang; Elizabeth L. Johnson; Lukasz Marcinkiewicz; Matthew A Smith; Ying Zhang; Alexander Kofman; David Schiff; James G. Christensen; Roger Abounader

We previously showed the involvement of the tyrosine kinase receptor c-Met in medulloblastoma malignancy. The nonreceptor tyrosine kinases focal adhesion kinase (FAK) and Pyk2 are key players in the progression of different cancers. However, their role in medulloblastoma malignancy is not well understood. In this study, using a protein array approach, we found that c-Met induces FAK and Pyk2 phosphorylation in medulloblastoma cells. We therefore studied the interactions between c-Met and FAK/Pyk2 and their implications for medulloblastoma therapy. We found that c-Met activates FAK and Pyk2 in several medulloblastoma cell lines. We also found that FAK and Pyk2 mediate the malignant effects of c-Met on medulloblastoma cell proliferation, migration, and invasion. On the basis of these findings, we hypothesized that combined c-Met and FAK inhibitions would have additive effects on the inhibition of medulloblastoma malignancy. To test this hypothesis, we assessed the effects on medulloblastoma malignancy parameters of single or combined treatments of medulloblastoma cells with c-Met and FAK small-molecule kinase inhibitors. We found a significant increase in the inhibitory effect of both inhibitors on medulloblastoma cell migration and cell invasion as compared with single inhibitions (P < 0.05). In addition, oral gavage treatment with c-Met inhibitor of mice bearing medulloblastoma xenografts significantly reduced in vivo tumor growth. Therefore, combining c-Met inhibitors with FAK inhibitors constitutes a new potential strategy for medulloblastoma therapy. Altogether, our study describes a role for FAK and Pyk2 in medulloblastoma malignancy, uncovers new interactions between c-Met and FAK/Pyk2, and proposes for the first time combining anti-c-Met and anti-FAK inhibitors as a new strategy for medulloblastoma therapy. Mol Cancer Ther; 11(2); 288–97. ©2011 AACR.


EBioMedicine | 2016

Inactivation of the CRL4-CDT2-SET8/p21 ubiquitylation and degradation axis underlies the therapeutic efficacy of pevonedistat in melanoma

Mouadh Benamar; Fadila Guessous; Kangping Du; Patrick Corbett; Joseph M. Obeid; Daniel Gioeli; Craig L. Slingluff; Tarek Abbas

The cullin-based CRL4-CDT2 ubiquitin ligase is emerging as a master regulator of cell proliferation. CRL4-CDT2 prevents re-initiation of DNA replication during the same cell cycle “rereplication” through targeted degradation of CDT1, SET8 and p21 during S-phase of the cell cycle. We show that CDT2 is overexpressed in cutaneous melanoma and predicts poor overall and disease-free survival. CDT2 ablation inhibited a panel of melanoma cell lines through the induction of SET8- and p21-dependent DNA rereplication and senescence. Pevonedistat (MLN4924), a specific inhibitor of the NEDD8 activating enzyme (NAE), inhibits the activity of cullin E3 ligases, thereby stabilizing a vast number of cullin substrates and resulting in cancer cell inhibition in vitro and tumor suppression in nude mice. We demonstrate that pevonedistat is effective at inhibiting the proliferation of melanoma cell lines in vitro through the induction of rereplication-dependent permanent growth arrest as well as through a transient, non-rereplication-dependent mechanism. CRISPR/Cas9-mediated heterozygous deletion of CDKN1A (encoding p21) or SET8 in melanoma cells demonstrated that the rereplication-mediated cytotoxicity of pevonedistat is mediated through preventing the degradation of p21 and SET8 and is essential for melanoma suppression in nude mice. By contrast, pevonedistat-induced transient growth suppression was independent of p21 or SET8, and insufficient to inhibit tumor growth in vivo. Pevonedistat additionally synergized with the BRAF kinase inhibitor PLX4720 to inhibit BRAF melanoma, and suppressed PLX4720-resistant melanoma cells. These findings demonstrate that the CRL4-CDT2-SET8/p21 degradation axis is the primary target of inhibition by pevonedistat in melanoma and suggest that a broad patient population may benefit from pevonedistat therapy. Research in Context The identification of new molecular targets and effective inhibitors is of utmost significance for the clinical management of melanoma. This study identifies CDT2, a substrate receptor for the CRL4 ubiquitin ligase, as a prognostic marker and therapeutic target in melanoma. CDT2 is required for melanoma cell proliferation and inhibition of CRL4CDT2 by pevonedistat suppresses melanoma in vitro and in vivo through the induction of DNA rereplication and senescence through the stabilization of the CRL4CDT2 substrates p21 and SET8. Pevonedistat also synergizes with vemurafenib in vivo and suppresses vemurafenib-resistant melanoma cells. These findings show a significant promise for targeting CRL4CDT2 therapeutically.

Collaboration


Dive into the Fadila Guessous's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ying Zhang

University of Virginia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yunqing Li

Johns Hopkins University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yanzhi Yang

University of Virginia

View shared research outputs
Researchain Logo
Decentralizing Knowledge