Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Benjamin Krüner is active.

Publication


Featured researches published by Benjamin Krüner.


Journal of Materials Chemistry | 2016

MXene as a novel intercalation-type pseudocapacitive cathode and anode for capacitive deionization

Pattarachai Srimuk; Friedrich Kaasik; Benjamin Krüner; Aura Tolosa; Simon Fleischmann; Nicolas Jäckel; Mehmet C. Tekeli; Mesut Aslan; Matthew E. Suss; Volker Presser

In this proof-of-concept study, we introduce and demonstrate MXene as a novel type of intercalation electrode for desalination via capacitive deionization (CDI). Traditional CDI cells employ nanoporous carbon electrodes with significant pore volume to achieve a large desalination capacity via ion electrosorption. By contrast, MXene stores charge by ion intercalation between the sheets of its two-dimensional nanolamellar structure. By this virtue, it behaves as an ideal pseudocapacitor, that is, showing capacitive electric response while intercalating both anions and cations. We synthesized Ti3C2-MXene by the conventional process of etching ternary titanium aluminum carbide i.e., the MAX phase (Ti3AlC2) with hydrofluoric acid. The MXene material was cast directly onto the porous separator of the CDI cell without added binder, and exhibited very stable performance over 30 CDI cycles with an average salt adsorption capacity of 13 ± 2 mg g−1.


Energy and Environmental Science | 2016

Tin/vanadium redox electrolyte for battery-like energy storage capacity combined with supercapacitor-like power handling

Juhan Lee; Benjamin Krüner; Aura Tolosa; S. Sathyamoorthi; Daekyu Kim; Soumyadip Choudhury; Kum-Hee Seo; Volker Presser

We introduce a high performance hybrid electrochemical energy storage system based on an aqueous electrolyte containing tin sulfate (SnSO4) and vanadyl sulfate (VOSO4) with nanoporous activated carbon. The energy storage mechanism of this system benefits from the unique synergy of concurrent electric double-layer formation, reversible tin redox reactions, and three-step redox reactions of vanadium. The hybrid system showed excellent electrochemical properties such as a promising energy capacity (ca. 75 W h kg−1, 30 W h L−1) and a maximum power of up to 1.5 kW kg−1 (600 W L−1, 250 W m−2), exhibiting capacitor-like galvanostatic cycling stability and a low level of self-discharging rate.


ACS Applied Materials & Interfaces | 2016

Sub-micrometer Novolac-Derived Carbon Beads for High Performance Supercapacitors and Redox Electrolyte Energy Storage

Benjamin Krüner; Juhan Lee; Nicolas Jäckel; Aura Tolosa; Volker Presser

Carbon beads with sub-micrometer diameter were produced with a self-emulsifying novolac-ethanol-water system. A physical activation with CO2 was carried out to create a high microporosity with a specific surface area varying from 771 (DFT) to 2237 m(2)/g (DFT) and a total pore volume from 0.28 to 1.71 cm(3)/g. The carbon particles conserve their spherical shape after the thermal treatments. The controllable porosity of the carbon spheres is attractive for the application in electrochemical double layer capacitors. The electrochemical characterization was carried out in aqueous 1 M Na2SO4 (127 F/g) and organic 1 M tetraethylammonium tetrafluoroborate in propylene carbonate (123 F/g). Furthermore, an aqueous redox electrolyte (6 M KI) was tested with the highly porous carbon and a specific energy of 33 W·h/kg (equivalent to 493 F/g) was obtained. In addition to a high specific capacitance, the carbon beads also provide an excellent rate performance at high current and potential in all tested electrolytes, which leads to a high specific power (>11 kW/kg) with an electrode thickness of ca. 200 μm.


Journal of Materials Chemistry | 2017

Tuning pseudocapacitive and battery-like lithium intercalation in vanadium dioxide/carbon onion hybrids for asymmetric supercapacitor anodes

Simon Fleischmann; Marco Zeiger; Nicolas Jäckel; Benjamin Krüner; Valeria Lemkova; Mathias Widmaier; Volker Presser

The study presents the synthesis of vanadium oxide/carbon onion hybrid materials. Flower-like vanadium oxide nanostructures nucleate on carbon onion nanoparticles under hydrothermal conditions, forming a highly intertwined network. By varying the amount of added carbon onions during the synthesis, the number of possible nucleation sites can be adjusted, resulting in the preferential growth of vanadium dioxide in either P21/c or C2/m space group. When employed as a lithium intercalation electrode, P21/c VO2 exhibits capacitor-like (pseudocapacitive) lithium intercalation, whereas C2/m VO2 shows battery-like intercalation peaks with a maximum capacity of 127 mA h g−1. By selecting an optimum ratio and thereby combining both intercalation mechanisms, enhanced kinetics with discharge capacities of 45 mA h g−1 and 29 mA h g−1 at high rates of 50 A g−1 and 100 A g−1 (equal to 394C and 788C) are obtained. This behavior can be translated to a device level by using the material as anodes in asymmetric supercapacitors with activated carbon cathodes, yielding a maximum specific energy of 45 W h kg−1 and a high power of 58 kW kg−1, while longevity over 5000 charge/discharge cycles is demonstrated.


Journal of Materials Chemistry | 2016

Vanadium pentoxide/carbide-derived carbon core–shell hybrid particles for high performance electrochemical energy storage

Marco Zeiger; Teguh Ariyanto; Benjamin Krüner; Nicolas J. Peter; Simon Fleischmann; Bastian J. M. Etzold; Volker Presser

A novel, two step synthesis is presented combining the formation of carbide-derived carbon (CDC) and redox-active vanadium pentoxide (V2O5) in a core–shell manner using solely vanadium carbide (VC) as the precursor. In a first step, the outer part of VC particles is transformed to nanoporous CDC owing to the in situ formation of chlorine gas from NiCl2 at 700 °C. In a second step, the remaining VC core is calcined in synthetic air to obtain V2O5/CDC core–shell particles. Materials characterization by means of electron microscopy, Raman spectroscopy, and X-ray diffraction clearly demonstrates the partial transformation from VC to CDC, as well as the successive oxidation to V2O5/CDC core–shell particles. Electrochemical performance was tested in organic 1 M LiClO4 in acetonitrile using half- and asymmetric full-cell configuration. High specific capacities of 420 mA h g−1 (normalized to V2O5) and 310 mA h g−1 (normalized to V2O5/CDC) were achieved. The unique nanotextured core–shell architecture enables high power retention with ultrafast charging and discharging, achieving more than 100 mA h g−1 at 5 A g−1 (rate of 12C). Asymmetric cell design with CDC on the positive polarization side leads to a high specific energy of up to 80 W h kg−1 with a superior retention of more than 80% over 10 000 cycles and an overall energy efficiency of up to 80% at low rates.


RSC Advances | 2016

High performance stability of titania decorated carbon for desalination with capacitive deionization in oxygenated water

Pattarachai Srimuk; Lucie Ries; Marco Zeiger; Simon Fleischmann; Nicolas Jäckel; Aura Tolosa; Benjamin Krüner; Mesut Aslan; Volker Presser

Performance stability in capacitive deionization (CDI) is particularly challenging in systems with a high amount of dissolved oxygen due to rapid oxidation of the carbon anode and peroxide formation. For example, carbon electrodes show a fast performance decay, leading to just 15% of the initial performance after 50 CDI cycles in oxygenated saline solution (5 mM NaCl). We present a novel strategy to overcome this severe limitation by employing nanocarbon particles hybridized with sol–gel-derived titania. In our proof-of-concept study, we demonstrate very stable performance in low molar saline electrolyte (5 mM NaCl) with saturated oxygen for the carbon/metal oxide hybrid (90% of the initial salt adsorption capacity after 100 cycles). The electrochemical analysis using a rotating disk electrode (RDE) confirms the oxygen reduction reaction (ORR) catalytic effect of FW200/TiO2, preventing local peroxide formation by locally modifying the oxygen reduction reaction.


Journal of Materials Chemistry | 2016

Niobium carbide nanofibers as a versatile precursor for high power supercapacitor and high energy battery electrodes

Aura Tolosa; Benjamin Krüner; Simon Fleischmann; Nicolas Jäckel; Marco Zeiger; Mesut Aslan; Ingrid Grobelsek; Volker Presser

This study presents electrospun niobium carbide/carbon (NbC/C) hybrid nanofibers, with an average diameter of 69 ± 30 nm, as a facile precursor to derive either highly nanoporous niobium carbide-derived carbon (NbC–CDC) fibers for supercapacitor applications or niobium pentoxide/carbon (Nb2O5/C) hybrid fibers for battery-like energy storage. In all cases, the electrodes consist of binder-free and free-standing nanofiber mats that can be used without further conductive additives. Chlorine gas treatment conformally transforms NbC nanofiber mats into NbC–CDC fibers with a specific surface area of 1508 m2 g−1. These nanofibers show a maximum specific energy of 19.5 W h kg−1 at low power and 7.6 W h kg−1 at a high specific power of 30 kW kg−1 in an organic electrolyte. CO2 treatment transforms NbC into T-Nb2O5/C hybrid nanofiber mats that provide a maximum capacity of 156 mA h g−1. The presence of graphitic carbon in the hybrid nanofibers enabled high power handling, maintaining 50% of the initial energy storage capacity at a high rate of 10 A g−1 (64 C-rate). When benchmarked for an asymmetric full-cell, a maximum specific energy of 86 W h kg−1 was obtained. The high specific power for both systems, NbC–CDC and T-Nb2O5/C, resulted from the excellent charge propagation in the continuous nanofiber network and the high graphitization of the carbon structure.


Sustainable Energy and Fuels | 2017

Asymmetric tin–vanadium redox electrolyte for hybrid energy storage with nanoporous carbon electrodes

Juhan Lee; Aura Tolosa; Benjamin Krüner; Nicolas Jäckel; Simon Fleischmann; Marco Zeiger; Daekyu Kim; Volker Presser

In recent decades, redox-active electrolytes have been applied in stationary energy storage systems, benefitting from Faradaic reactions of the electrolyte instead of the electrode material. One of the challenging tasks is to balance the redox activities between the negative and positive electrode. As a possible solution, a mixed electrolyte with vanadyl and tin sulfate was previously suggested; however, a low power performance is a great challenge to be overcome. Here, we found that the origin of the poor power performance in the mixture electrolyte system (vanadium complex and tin solution) is the reduction of the pore volume at the positive electrode via irreversible tin dioxide formation. To prevent the latter, we introduce a hybrid energy storage system exhibiting both battery-like and supercapacitor-like features via asymmetric redox electrolytes at the microporous activated carbon electrodes; SnF2 solution as anolyte and VOSO4 as catholyte. By employing an anion exchange membrane, the irreversible SnO2 formation at the positive electrode is effectively suppressed; thus, an asymmetric 1 M SnF2|3 M VOSO4 system provides a high maximum specific power (3.8 kW kg−1 or 1.5 kW L−1), while still exhibiting a high maximum specific energy up to 58.4 W h kg−1 (23.4 W h L−1) and a high cycling stability over 6500 cycles.


RSC Advances | 2016

Influence of carbon substrate on the electrochemical performance of carbon/manganese oxide hybrids in aqueous and organic electrolytes

Marco Zeiger; Simon Fleischmann; Benjamin Krüner; Aura Tolosa; Stephan Bechtel; Mathias Baltes; Anna Schreiber; Riko Moroni; Severin Vierrath; Simon Thiele; Volker Presser

Manganese oxide presents very promising electrochemical properties as an electrode material in supercapacitors, but there remain important open questions to guide further development of the complex manganese oxide/carbon/electrolyte system. Our work addresses specifically the influence of carbon ordering and the difference between outer and inner porosity of carbon particles for the application in aqueous 1 M Na2SO4 and 1 M LiClO4 in acetonitrile. Birnessite-type manganese oxide was hydrothermally hybridized on two kinds of carbon onions with only outer surface area and different electrical conductivity, and conventional activated carbon with a high inner porosity. Carbon onions with a high degree of carbon ordering, high conductivity, and high outer surface area were identified as the most promising material, yielding 179 F g−1. Pore blocking in activated carbon yields unfavorable electrochemical performances. The highest specific energy of 16.4 W h kg−1 was measured for a symmetric full-cell arrangement of manganese oxide coated high temperature carbon onions in the organic electrolyte. High stability during 10 000 cycles was achieved for asymmetric full-cells, which proved as a facile way to enhance the electrochemical performance stability.


Journal of Materials Chemistry | 2017

Vanadia–titania multilayer nanodecoration of carbon onions via atomic layer deposition for high performance electrochemical energy storage

Simon Fleischmann; Aura Tolosa; Marco Zeiger; Benjamin Krüner; Nicolas J. Peter; Ingrid Grobelsek; Antje Quade; Angela Kruth; Volker Presser

Atomic layer deposition has proven to be a particularly attractive approach for decorating mesoporous carbon substrates with redox active metal oxides for electrochemical energy storage. This study, for the first time, capitalizes on the cyclic character of atomic layer deposition to obtain highly conformal and atomically controlled decoration of carbon onions with alternating stacks of vanadia and titania. The addition of 25 mass% TiO2 leads to expansion of the VO2 unit cell, thus greatly enhancing lithium intercalation capacity and kinetics. Electrochemical characterization revealed an ultrahigh discharge capacity of up to 382 mA h g−1 of the composite electrode (554 mA h g−1 per metal oxide) with an impressive capacity retention of 82 mA h g−1 (120 mA h g−1 per metal oxide) at a high discharge rate of 20 A g−1 or 52C. Stability benchmarking showed stability over 3000 cycles when discharging to a reduced potential of −1.8 V vs. carbon. These capacity values are among the highest reported for any metal oxide system, while in addition, supercapacitor-like power performance and longevity are achieved. At a device level, high specific energy and power of up to 110 W h kg−1 and 6 kW kg−1, respectively, were achieved when employing the hybrid material as anode versus activated carbon cathode.

Collaboration


Dive into the Benjamin Krüner's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge