Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Benjamin Liou is active.

Publication


Featured researches published by Benjamin Liou.


Human Molecular Genetics | 2010

Neuronopathic Gaucher disease in the mouse: Viable combined selective saposin C deficiency and mutant glucocerebrosidase (V394L) mice with glucosylsphingosine and glucosylceramide accumulation and progressive neurological deficits

Ying Sun; Benjamin Liou; Huimin Ran; Matthew R. Skelton; Michael T. Williams; Charles V. Vorhees; Kazuyuki Kitatani; Yusuf A. Hannun; David P. Witte; You-Hai Xu; Gregory A. Grabowski

Gaucher disease is caused by defective acid β-glucosidase (GCase) function. Saposin C is a lysosomal protein needed for optimal GCase activity. To test the in vivo effects of saposin C on GCase, saposin C deficient mice (C−/−) were backcrossed to point mutated GCase (V394L/V394L) mice. The resultant mice (4L;C*) began to exhibit CNS abnormalities ∼30 days: first as hindlimb paresis, then progressive tremor and ataxia. Death occurred ∼48 days due to neurological deficits. Axonal degeneration was evident in brain stem, spinal cord and white matter of cerebellum accompanied by increasing infiltration of the brain stem, cortex and thalamus by CD68 positive microglial cells and activation of astrocytes. Electron microscopy showed inclusion bodies in neuronal processes and degenerating cells. Accumulation of p62 and Lamp2 were prominent in the brain suggesting the impairment of autophagosome/lysosome function. This phenotype was different from either V394L/V394L or C−/− alone. Relative to V394L/V394L mice, 4L;C* mice had diminished GCase protein and activity. Marked increases (20- to 30-fold) of glucosylsphingosine (GS) and moderate elevation (1.5- to 3-fold) of glucosylceramide (GC) were in 4L;C* brains. Visceral tissues had increases of GS and GC, but no storage cells were found. Neuronal cells in thick hippocampal slices from 4L;C* mice had significantly attenuated long-term potentiation, presumably resulting from substrate accumulation. The 4L;C* mouse mimics the CNS phenotype and biochemistry of some type 3 (neuronopathic) variants of Gaucher disease and is a unique model suitable for testing pharmacological chaperone and substrate reduction therapies, and investigating the mechanisms of neuronopathic Gaucher disease.


Journal of Biological Chemistry | 2012

Ex Vivo and in Vivo Effects of Isofagomine on Acid β-Glucosidase Variants and Substrate Levels in Gaucher Disease

Ying Sun; Benjamin Liou; You-Hai Xu; Brian Quinn; Wujuan Zhang; Rick Hamler; Kenneth D. R. Setchell; Gregory A. Grabowski

Background: “Chaperones” may enhance mutant enzyme activities, but therapeutic levels have not been shown in vivo. Results: A chaperone, isofagomine, stabilizes wild type and mutant acid β-glucosidases in tissues and sera and reduces visceral substrates in vivo. Conclusion: These effects are enhanced pre- versus postsynthetically. Significance: The results are proof of principle for the potential therapeutic use in residual enzyme diseases. Isofagomine (IFG) is an acid β-glucosidase (GCase) active site inhibitor that acts as a pharmacological chaperone. The effect of IFG on GCase function was investigated in GCase mutant fibroblasts and mouse models. IFG inhibits GCase with Ki ∼30 nm for wild-type and mutant enzymes (N370S and V394L). Fibroblasts treated with IFG at μm concentrations showed enhancement of WT and mutant GCase activities and protein levels. Administration of IFG (30 mg/kg/day) to the mice homozygous for GCase mutations (V394L, D409H, or D409V) led to increased GCase activity in visceral tissues and brain extracts. IFG effects on GCase stability and substrate levels were evaluated in a mouse model (hG/4L/PS-NA) that has doxycycline-controlled human WT GCase (hGCase) expression driven by a liver-specific promoter and is also homozygous for the IFG-responsive V394L GCase. Both human and mouse GCase activity and protein levels were increased in IFG-treated mice. The liver-secreted hGCase in serum was stabilized, and its effect on the lung and spleen involvement was enhanced by IFG treatment. In 8-week IFG-treated mice, the accumulated glucosylceramide and glucosylsphingosine were reduced by 75 and 33%, respectively. Decreases of storage cells were correlated with >50% reductions in substrate levels. These results indicate that IFG stabilizes GCase in tissues and serum and can reduce visceral substrates in vivo.


PLOS ONE | 2011

Isofagomine In Vivo Effects in a Neuronopathic Gaucher Disease Mouse

Ying Sun; Huimin Ran; Benjamin Liou; Brian Quinn; Matthew Zamzow; Wujuan Zhang; Jacek Bielawski; Kazuyuki Kitatani; Kenneth D. R. Setchell; Yusuf A. Hannun; Gregory A. Grabowski

The pharmacological chaperone, isofagomine (IFG), enhances acid β-glucosidase (GCase) function by altering folding, trafficking, and activity in wild-type and Gaucher disease fibroblasts. The in vivo effects of IFG on GCase activity, its substrate levels, and phenotype were evaluated using a neuronopathic Gaucher disease mouse model, 4L;C* (V394L/V394L + saposin C-/-) that has CNS accumulation of glucosylceramide (GC) and glucosylsphingosine (GS) as well as progressive neurological deterioration. IFG administration to 4L;C* mice at 20 or 600 mg/kg/day resulted in life span extensions of 10 or 20 days, respectively, and increases in GCase activity and protein levels in the brain and visceral tissues. Cerebral cortical GC and GS levels showed no significant reductions with IFG treatment. Increases of GC or GS levels were detected in the visceral tissues of IFG treated (600 mg/kg/day) mice. The attenuations of brain proinflammatory responses in the treated mice were evidenced by reductions in astrogliosis and microglial cell activation, and decreased p38 phosphorylation and TNFα levels. Terminally, axonal degeneration was present in the brain and spinal cord from untreated and treated 4L;C* mice. These data demonstrate that IFG exerts in vivo effects by enhancing V394L GCase protein and activity levels, and in mediating suppression of proinflammation, which led to delayed onset of neurological disease and extension of the life span of 4L;C* mice. However, this was not correlated with a reduction in the accumulation of lipid substrates.


Human Molecular Genetics | 2014

Multiple pathogenic proteins implicated in neuronopathic Gaucher disease mice

You-Hai Xu; Kui Xu; Ying Sun; Benjamin Liou; Brian Quinn; Rong-hua Li; Ling Xue; Wujuan Zhang; Kenneth D. R. Setchell; David P. Witte; Gregory A. Grabowski

Gaucher disease, a prevalent lysosomal storage disease (LSD), is caused by insufficient activity of acid β-glucosidase (GCase) and the resultant glucosylceramide (GC)/glucosylsphingosine (GS) accumulation in visceral organs (Type 1) and the central nervous system (Types 2 and 3). Recent clinical and genetic studies implicate a pathogenic link between Gaucher and neurodegenerative diseases. The aggregation and inclusion bodies of α-synuclein with ubiquitin are present in the brains of Gaucher disease patients and mouse models. Indirect evidence of β-amyloid pathology promoting α-synuclein fibrillation supports these pathogenic proteins as a common feature in neurodegenerative diseases. Here, multiple proteins are implicated in the pathogenesis of chronic neuronopathic Gaucher disease (nGD). Immunohistochemical and biochemical analyses showed significant amounts of β-amyloid and amyloid precursor protein (APP) aggregates in the cortex, hippocampus, stratum and substantia nigra of the nGD mice. APP aggregates were in neuronal cells and colocalized with α-synuclein signals. A majority of APP co-localized with the mitochondrial markers TOM40 and Cox IV; a small portion co-localized with the autophagy proteins, P62/LC3, and the lysosomal marker, LAMP1. In cultured wild-type brain cortical neural cells, the GCase-irreversible inhibitor, conduritol B epoxide (CBE), reproduced the APP/α-synuclein aggregation and the accumulation of GC/GS. Ultrastructural studies showed numerous larger-sized and electron-dense mitochondria in nGD cerebral cortical neural cells. Significant reductions of mitochondrial adenosine triphosphate production and oxygen consumption (28-40%) were detected in nGD brains and in CBE-treated neural cells. These studies implicate defective GCase function and GC/GS accumulation as risk factors for mitochondrial dysfunction and the multi-proteinopathies (α-synuclein-, APP- and Aβ-aggregates) in nGD.


PLOS ONE | 2013

Substrate Compositional Variation with Tissue/Region and Gba1 Mutations in Mouse Models–Implications for Gaucher Disease

Ying Sun; Wujuan Zhang; You-Hai Xu; Brian Quinn; Nupur Dasgupta; Benjamin Liou; Kenneth D. R. Setchell; Gregory A. Grabowski

Gaucher disease results from GBA1 mutations that lead to defective acid β-glucosidase (GCase) mediated cleavage of glucosylceramide (GC) and glucosylsphingosine as well as heterogeneous manifestations in the viscera and CNS. The mutation, tissue, and age-dependent accumulations of different GC species were characterized in mice with Gba1 missense mutations alone or in combination with isolated saposin C deficiency (C*). Gba1 heteroallelism for D409V and null alleles (9V/null) led to GC excesses primarily in the visceral tissues with preferential accumulations of lung GC24∶0, but not in liver, spleen, or brain. Age-dependent increases of different GC species were observed. The combined saposin C deficiency (C*) with V394L homozygosity (4L;C*) showed major GC18∶0 degradation defects in the brain, whereas the analogous mice with D409H homozygosity and C* (9H;C*) led to all GC species accumulating in visceral tissues. Glucosylsphingosine was poorly degraded in brain by V394L and D409H GCases and in visceral tissues by D409V GCase. The neonatal lethal N370S/N370S genotype had insignificant substrate accumulations in any tissue. These results demonstrate age, organ, and mutation-specific quantitative differences in GC species and glucosylsphingosine accumulations that can have influence in the tissue/regional expression of Gaucher disease phenotypes.


Nature | 2017

Complement drives glucosylceramide accumulation and tissue inflammation in Gaucher disease

Manoj Pandey; Thomas Andrew Burrow; Reena Rani; Lisa J. Martin; David P. Witte; Kenneth D. R. Setchell; Mary McKay; Albert F. Magnusen; Wujuan Zhang; Benjamin Liou; Jörg Köhl; Gregory A. Grabowski

Gaucher disease is caused by mutations in GBA1, which encodes the lysosomal enzyme glucocerebrosidase (GCase). GBA1 mutations drive extensive accumulation of glucosylceramide (GC) in multiple innate and adaptive immune cells in the spleen, liver, lung and bone marrow, often leading to chronic inflammation. The mechanisms that connect excess GC to tissue inflammation remain unknown. Here we show that activation of complement C5a and C5a receptor 1 (C5aR1) controls GC accumulation and the inflammatory response in experimental and clinical Gaucher disease. Marked local and systemic complement activation occurred in GCase-deficient mice or after pharmacological inhibition of GCase and was associated with GC storage, tissue inflammation and proinflammatory cytokine production. Whereas all GCase-inhibited mice died within 4–5 weeks, mice deficient in both GCase and C5aR1, and wild-type mice in which GCase and C5aR were pharmacologically inhibited, were protected from these adverse effects and consequently survived. In mice and humans, GCase deficiency was associated with strong formation of complement-activating GC-specific IgG autoantibodies, leading to complement activation and C5a generation. Subsequent C5aR1 activation controlled UDP-glucose ceramide glucosyltransferase production, thereby tipping the balance between GC formation and degradation. Thus, extensive GC storage induces complement-activating IgG autoantibodies that drive a pathway of C5a generation and C5aR1 activation that fuels a cycle of cellular GC accumulation, innate and adaptive immune cell recruitment and activation in Gaucher disease. As enzyme replacement and substrate reduction therapies are expensive and still associated with inflammation, increased risk of cancer and Parkinson disease, targeting C5aR1 may serve as a treatment option for patients with Gaucher disease and, possibly, other lysosomal storage diseases.


PLOS ONE | 2015

Properties of neurons derived from induced pluripotent stem cells of Gaucher disease type 2 patient fibroblasts: potential role in neuropathology.

Ying Sun; Jane Florer; Christopher N. Mayhew; Zhanfeng Jia; Zhiying Zhao; Kui Xu; Huimin Ran; Benjamin Liou; Wujuan Zhang; Kenneth D. R. Setchell; Jianguo G. Gu; Gregory A. Grabowski

Gaucher disease (GD) is caused by insufficient activity of acid β-glucosidase (GCase) resulting from mutations in GBA1. To understand the pathogenesis of the neuronopathic GD, induced pluripotent stem cells (iPSCs) were generated from fibroblasts isolated from three GD type 2 (GD2) and 2 unaffected (normal and GD carrier) individuals. The iPSCs were converted to neural precursor cells (NPCs) which were further differentiated into neurons. Parental GD2 fibroblasts as well as iPSCs, NPCs, and neurons had similar degrees of GCase deficiency. Lipid analyses showed increases of glucosylsphingosine and glucosylceramide in the GD2 cells. In addition, GD2 neurons showed increased α-synuclein protein compared to control neurons. Whole cell patch-clamping of the GD2 and control iPSCs-derived neurons demonstrated excitation characteristics of neurons, but intriguingly, those from GD2 exhibited consistently less negative resting membrane potentials with various degree of reduction in action potential amplitudes, sodium and potassium currents. Culture of control neurons in the presence of the GCase inhibitor (conduritol B epoxide) recapitulated these findings, providing a functional link between decreased GCase activity in GD and abnormal neuronal electrophysiological properties. To our knowledge, this study is first to report abnormal electrophysiological properties in GD2 iPSC-derived neurons that may underlie the neuropathic phenotype in Gaucher disease.


Molecular Genetics and Metabolism | 2014

Reversal of advanced disease in lysosomal acid lipase deficient mice: A model for lysosomal acid lipase deficiency disease

Ying Sun; You-Hai Xu; Hong Du; Brian Quinn; Benjamin Liou; Lori Stanton; Venette Inskeep; Huimin Ran; Phillip Jakubowitz; Nicholas Grilliot; Gregory A. Grabowski

Lysosomal acid lipase (LAL) is an essential enzyme that hydrolyzes triglycerides (TG) and cholesteryl esters (CE) in lysosomes. Mutations of the LIPA gene lead to Wolman disease (WD) and cholesterol ester storage disease (CESD). The disease hallmarks include hepatosplenomegaly and extensive storage of CE and/or TG. The effects of intravenous investigational enzyme therapy (ET) on survival and efficacy were evaluated in Lipa knock out, lal-/- mice with advanced disease using recombinant human LAL (rhLAL). Comparative ET was conducted with lower doses (weekly, 0.8 and 3.2mg/kg) beginning at 16 weeks (study 1), and with higher dose (10mg/kg) in early (8-weeks), middle (16-weeks) and late (24-weeks) disease stages (study 2). In study 1, rhLAL extended the life span of lal-/- mice in a dose dependent manner by 52 (0.8 mg/kg) or 94 (3.2mg/kg) days. This was accompanied by partial correction of cholesterol and TG levels in spleen and liver. In study 2, the high dose resulted in a significant improvement in organ size (liver, spleen and small intestine) and tissue histology as well as significant decreases in cholesterol and TG in all three groups. In the treated livers and spleens the cholesterol and TG levels were reduced to below treatment initiation levels indicating a reversal of disease manifestations, even in advanced disease. ET diminished liver fibrosis and macrophage proliferation. These results show that LAL deficiency can be improved biochemically and histopathologically by various dosages of ET, even in advanced disease.


PLOS ONE | 2009

In Vivo and Ex Vivo Evaluation of L-Type Calcium Channel Blockers on Acid β-Glucosidase in Gaucher Disease Mouse Models

Ying Sun; Benjamin Liou; Brian Quinn; Huimin Ran; You-Hai Xu; Gregory A. Grabowski

Gaucher disease is a lysosomal storage disease caused by mutations in acid β-glucosidase (GCase) leading to defective hydrolysis and accumulation of its substrates. Two L-type calcium channel (LTCC) blockers—verapamil and diltiazem—have been reported to modulate endoplasmic reticulum (ER) folding, trafficking, and activity of GCase in human Gaucher disease fibroblasts. Similarly, these LTCC blockers were tested with cultured skin fibroblasts from homozygous point-mutated GCase mice (V394L, D409H, D409V, and N370S) with the effect of enhancing of GCase activity. Correspondingly, diltiazem increased GCase protein and facilitated GCase trafficking to the lysosomes of these cells. The in vivo effects of diltiazem on GCase were evaluated in mice homozygous wild-type (WT), V394L and D409H. In D409H homozygotes diltiazem (10 mg/kg/d via drinking water or 50–200 mg/kg/d intraperitoneally) had minor effects on increasing GCase activity in brain and liver (1.2-fold). Diltiazem treatment (10 mg/kg/d) had essentially no effect on WT and V394L GCase protein or activity levels (<1.2-fold) in liver. These results show that LTCC blockers had the ex vivo effects of increasing GCase activity and protein in the mouse fibroblasts, but these effects did not translate into similar changes in vivo even at very high drug doses.


Human Molecular Genetics | 2015

Neuronopathic Gaucher disease: dysregulated mRNAs and miRNAs in brain pathogenesis and effects of pharmacologic chaperone treatment in a mouse model

Nupur Dasgupta; You-Hai Xu; Ronghua Li; Manoj Pandey; Stuart L. Tinch; Benjamin Liou; Venette Inskeep; Wujuan Zhang; Kenneth D. R. Setchell; Mehdi Keddache; Gregory A. Grabowski; Ying Sun

Defective lysosomal acid β-glucosidase (GCase) in Gaucher disease causes accumulation of glucosylceramide (GC) and glucosylsphingosine (GS) that distress cellular functions. To study novel pathological mechanisms in neuronopathic Gaucher disease (nGD), a mouse model (4L;C*), an analogue to subacute human nGD, was investigated for global profiles of differentially expressed brain mRNAs (DEGs) and miRNAs (DEmiRs). 4L;C* mice displayed accumulation of GC and GS, activated microglial cells, reduced number of neurons and aberrant mitochondrial function in the brain followed by deterioration in motor function. DEGs and DEmiRs were characterized from sequencing of mRNA and miRNA from cerebral cortex, brain stem, midbrain and cerebellum of 4L;C* mice. Gene ontology enrichment and pathway analysis showed preferential mitochondrial dysfunction in midbrain and uniform inflammatory response and identified novel pathways, axonal guidance signaling, synaptic transmission, eIF2 and mammalian target of rapamycin (mTOR) signaling potentially involved in nGD. Similar analyses were performed with mice treated with isofagomine (IFG), a pharmacologic chaperone for GCase. IFG treatment did not alter the GS and GC accumulation significantly but attenuated the progression of the disease and altered numerous DEmiRs and target DEGs to their respective normal levels in inflammation, mitochondrial function and axonal guidance pathways, suggesting its regulation on miRNA and the associated mRNA that underlie the neurodegeneration in nGD. These analyses demonstrate that the neurodegenerative phenotype in 4L;C* mice was associated with dysregulation of brain mRNAs and miRNAs in axonal guidance, synaptic plasticity, mitochondria function, eIF2 and mTOR signaling and inflammation and provides new insights for the nGD pathological mechanism.

Collaboration


Dive into the Benjamin Liou's collaboration.

Top Co-Authors

Avatar

Gregory A. Grabowski

Cincinnati Children's Hospital Medical Center

View shared research outputs
Top Co-Authors

Avatar

Ying Sun

Cincinnati Children's Hospital Medical Center

View shared research outputs
Top Co-Authors

Avatar

Wujuan Zhang

Cincinnati Children's Hospital Medical Center

View shared research outputs
Top Co-Authors

Avatar

Kenneth D. R. Setchell

Cincinnati Children's Hospital Medical Center

View shared research outputs
Top Co-Authors

Avatar

Brian Quinn

Cincinnati Children's Hospital Medical Center

View shared research outputs
Top Co-Authors

Avatar

Venette Inskeep

Cincinnati Children's Hospital Medical Center

View shared research outputs
Top Co-Authors

Avatar

You-Hai Xu

Cincinnati Children's Hospital Medical Center

View shared research outputs
Top Co-Authors

Avatar

Huimin Ran

Cincinnati Children's Hospital Medical Center

View shared research outputs
Top Co-Authors

Avatar

Dao Pan

University of Cincinnati

View shared research outputs
Top Co-Authors

Avatar

David P. Witte

Cincinnati Children's Hospital Medical Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge