Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where You-Hai Xu is active.

Publication


Featured researches published by You-Hai Xu.


Annals of Neurology | 2011

Acid β‐glucosidase mutants linked to gaucher disease, parkinson disease, and lewy body dementia alter α‐synuclein processing

Valerie Cullen; S. Pablo Sardi; Juliana Ng; You-Hai Xu; Ying Sun; Julianna J. Tomlinson; Piotr Kolodziej; Ilana Kahn; Paul Saftig; John Woulfe; Jean-Christophe Rochet; Marcie A. Glicksman; Seng H. Cheng; Gregory A. Grabowski; Lamya S. Shihabuddin; Michael G. Schlossmacher

Heterozygous mutations in the GBA1 gene elevate the risk of Parkinson disease and dementia with Lewy bodies; both disorders are characterized by misprocessing of α‐synuclein (SNCA). A loss in lysosomal acid–β‐glucosidase enzyme (GCase) activity due to biallelic GBA1 mutations underlies Gaucher disease. We explored mechanisms for the genes association with increased synucleinopathy risk.


American Journal of Pathology | 2003

Viable Mouse Models of Acid β-Glucosidase Deficiency: The Defect in Gaucher Disease

You-Hai Xu; Brian Quinn; David P. Witte; Gregory A. Grabowski

Gaucher disease is an autosomal recessively inherited disease caused by mutations at the acid beta-glucosidase (GCase) locus (GBA). To develop viable models of Gaucher disease, point mutations (pmuts), encoding N370S, V394L, D409H, or D409V were introduced into the mouse GCase (gba) locus. DNA sequencing verified each unique pmut. Mutant GCase mRNAs were near wild-type (WT) levels. GCase activities were reduced to 2 to 25% of WT in liver, lung, spleen, and cultured fibroblasts from pmut/pmut or pmut/null mice. The corresponding brain GCase activities were approximately 25% of WT. N370S homozygosity was lethal in the neonatal period. For the other pmut mice, a few storage cells appeared in the spleen at > or =7 months (D409H or D409V homozygotes) or > or =1 year (V394L homozygotes). V394L/null, D409H/null, or D409V/null mice showed scattered storage cells in spleen at approximately 3 to 4 months. Occasional storage cells (sinusoidal cells) were present in liver. In D409V/null mice, large numbers of Mac-3-positive storage cells (ie, macrophages) accumulated in the lung. Glycosphingolipid analyses showed varying rates of progressive glucosylceramide accumulation in visceral organs of pmut/pmut or pmut/null mice, but not in brain. These GCase-deficient mice provide tools for gaining insight into the pathophysiology of Gaucher disease and developing improved therapies.


Journal of Lipid Research | 2010

Multi-system disorders of glycosphingolipid and ganglioside metabolism

You-Hai Xu; Sonya Barnes; Ying Sun; Gregory A. Grabowski

Glycosphingolipids (GSLs) and gangliosides are a group of bioactive glycolipids that include cerebrosides, globosides, and gangliosides. These lipids play major roles in signal transduction, cell adhesion, modulating growth factor/hormone receptor, antigen recognition, and protein trafficking. Specific genetic defects in lysosomal hydrolases disrupt normal GSL and ganglioside metabolism leading to their excess accumulation in cellular compartments, particularly in the lysosome, i.e., lysosomal storage diseases (LSDs). The storage diseases of GSLs and gangliosides affect all organ systems, but the central nervous system (CNS) is primarily involved in many. Current treatments can attenuate the visceral disease, but the management of CNS involvement remains an unmet medical need. Early interventions that alter the CNS disease have shown promise in delaying neurologic involvement in several CNS LSDs. Consequently, effective treatment for such devastating inherited diseases requires an understanding of the early developmental and pathological mechanisms of GSL and ganglioside flux (synthesis and degradation) that underlie the CNS diseases. These are the focus of this review.


Human Molecular Genetics | 2010

Neuronopathic Gaucher disease in the mouse: Viable combined selective saposin C deficiency and mutant glucocerebrosidase (V394L) mice with glucosylsphingosine and glucosylceramide accumulation and progressive neurological deficits

Ying Sun; Benjamin Liou; Huimin Ran; Matthew R. Skelton; Michael T. Williams; Charles V. Vorhees; Kazuyuki Kitatani; Yusuf A. Hannun; David P. Witte; You-Hai Xu; Gregory A. Grabowski

Gaucher disease is caused by defective acid β-glucosidase (GCase) function. Saposin C is a lysosomal protein needed for optimal GCase activity. To test the in vivo effects of saposin C on GCase, saposin C deficient mice (C−/−) were backcrossed to point mutated GCase (V394L/V394L) mice. The resultant mice (4L;C*) began to exhibit CNS abnormalities ∼30 days: first as hindlimb paresis, then progressive tremor and ataxia. Death occurred ∼48 days due to neurological deficits. Axonal degeneration was evident in brain stem, spinal cord and white matter of cerebellum accompanied by increasing infiltration of the brain stem, cortex and thalamus by CD68 positive microglial cells and activation of astrocytes. Electron microscopy showed inclusion bodies in neuronal processes and degenerating cells. Accumulation of p62 and Lamp2 were prominent in the brain suggesting the impairment of autophagosome/lysosome function. This phenotype was different from either V394L/V394L or C−/− alone. Relative to V394L/V394L mice, 4L;C* mice had diminished GCase protein and activity. Marked increases (20- to 30-fold) of glucosylsphingosine (GS) and moderate elevation (1.5- to 3-fold) of glucosylceramide (GC) were in 4L;C* brains. Visceral tissues had increases of GS and GC, but no storage cells were found. Neuronal cells in thick hippocampal slices from 4L;C* mice had significantly attenuated long-term potentiation, presumably resulting from substrate accumulation. The 4L;C* mouse mimics the CNS phenotype and biochemistry of some type 3 (neuronopathic) variants of Gaucher disease and is a unique model suitable for testing pharmacological chaperone and substrate reduction therapies, and investigating the mechanisms of neuronopathic Gaucher disease.


Journal of Biological Chemistry | 2012

Ex Vivo and in Vivo Effects of Isofagomine on Acid β-Glucosidase Variants and Substrate Levels in Gaucher Disease

Ying Sun; Benjamin Liou; You-Hai Xu; Brian Quinn; Wujuan Zhang; Rick Hamler; Kenneth D. R. Setchell; Gregory A. Grabowski

Background: “Chaperones” may enhance mutant enzyme activities, but therapeutic levels have not been shown in vivo. Results: A chaperone, isofagomine, stabilizes wild type and mutant acid β-glucosidases in tissues and sera and reduces visceral substrates in vivo. Conclusion: These effects are enhanced pre- versus postsynthetically. Significance: The results are proof of principle for the potential therapeutic use in residual enzyme diseases. Isofagomine (IFG) is an acid β-glucosidase (GCase) active site inhibitor that acts as a pharmacological chaperone. The effect of IFG on GCase function was investigated in GCase mutant fibroblasts and mouse models. IFG inhibits GCase with Ki ∼30 nm for wild-type and mutant enzymes (N370S and V394L). Fibroblasts treated with IFG at μm concentrations showed enhancement of WT and mutant GCase activities and protein levels. Administration of IFG (30 mg/kg/day) to the mice homozygous for GCase mutations (V394L, D409H, or D409V) led to increased GCase activity in visceral tissues and brain extracts. IFG effects on GCase stability and substrate levels were evaluated in a mouse model (hG/4L/PS-NA) that has doxycycline-controlled human WT GCase (hGCase) expression driven by a liver-specific promoter and is also homozygous for the IFG-responsive V394L GCase. Both human and mouse GCase activity and protein levels were increased in IFG-treated mice. The liver-secreted hGCase in serum was stabilized, and its effect on the lung and spleen involvement was enhanced by IFG treatment. In 8-week IFG-treated mice, the accumulated glucosylceramide and glucosylsphingosine were reduced by 75 and 33%, respectively. Decreases of storage cells were correlated with >50% reductions in substrate levels. These results indicate that IFG stabilizes GCase in tissues and serum and can reduce visceral substrates in vivo.


Pediatric Research | 1996

Turnover and distribution of intravenously administered mannose-terminated human acid beta-glucosidase in murine and human tissues.

You-Hai Xu; Elvira Ponce; Ying Sun; Tatyana Leonova; Kevin E. Bove; David P. Witte; Gregory A. Grabowski

Gaucher disease type 1, the most prevalent lysosomal storage disease, is caused by the defective activity of the lysosomal enzyme, acidβ-glucosidase, or glucocerebrosidase. Infusion of purified acidβ-glucosidase containing α-mannosyl-terminated oligosaccharides(alglucerase) is efficacious in reversing hematologic, hepatic, splenic, and bony disease manifestations. The murine tissue distribution and turnover of bolus injections of alglucerase was evaluated by enzymatic activity, quantitative cross-reacting immunologic material analyses, and immunofluorescence studies. Enzyme activity measurements detected distribution to liver, spleen, thymus, kidney, and bone marrow mononuclear cells, but not to lungs and brain. In kidney and thymus, the enzyme was transiently present. In liver and spleen, enzyme activity peaked at about 20 min postinjection followed by a biphasic decrease with t½ ≈ 40-60 min and≈ 12-14 h. In bone marrow maximal enzyme activity was at 40-60 min with a disappearance t½ ≈ 60 min. Quantitative cross-reacting immunologic material studies of liver and spleen showed delivery of enzyme with decreased catalytic rate constants whose degradation included denaturation and proteolytic components. By immunofluorescence the human enzyme was distributed primarily to reticuloendothelial cells of the liver and spleen. In autopsy material from a Gaucher disease type 2 patient treated with enzyme, immunohistochemical and activity studies showed distributions similar to those in mice. These studies indicate a complex delivery and intracellular degradation of acid β-glucosidase with lower intrinsic activity than the administered therapeutic agent.


Human Molecular Genetics | 2014

Multiple pathogenic proteins implicated in neuronopathic Gaucher disease mice

You-Hai Xu; Kui Xu; Ying Sun; Benjamin Liou; Brian Quinn; Rong-hua Li; Ling Xue; Wujuan Zhang; Kenneth D. R. Setchell; David P. Witte; Gregory A. Grabowski

Gaucher disease, a prevalent lysosomal storage disease (LSD), is caused by insufficient activity of acid β-glucosidase (GCase) and the resultant glucosylceramide (GC)/glucosylsphingosine (GS) accumulation in visceral organs (Type 1) and the central nervous system (Types 2 and 3). Recent clinical and genetic studies implicate a pathogenic link between Gaucher and neurodegenerative diseases. The aggregation and inclusion bodies of α-synuclein with ubiquitin are present in the brains of Gaucher disease patients and mouse models. Indirect evidence of β-amyloid pathology promoting α-synuclein fibrillation supports these pathogenic proteins as a common feature in neurodegenerative diseases. Here, multiple proteins are implicated in the pathogenesis of chronic neuronopathic Gaucher disease (nGD). Immunohistochemical and biochemical analyses showed significant amounts of β-amyloid and amyloid precursor protein (APP) aggregates in the cortex, hippocampus, stratum and substantia nigra of the nGD mice. APP aggregates were in neuronal cells and colocalized with α-synuclein signals. A majority of APP co-localized with the mitochondrial markers TOM40 and Cox IV; a small portion co-localized with the autophagy proteins, P62/LC3, and the lysosomal marker, LAMP1. In cultured wild-type brain cortical neural cells, the GCase-irreversible inhibitor, conduritol B epoxide (CBE), reproduced the APP/α-synuclein aggregation and the accumulation of GC/GS. Ultrastructural studies showed numerous larger-sized and electron-dense mitochondria in nGD cerebral cortical neural cells. Significant reductions of mitochondrial adenosine triphosphate production and oxygen consumption (28-40%) were detected in nGD brains and in CBE-treated neural cells. These studies implicate defective GCase function and GC/GS accumulation as risk factors for mitochondrial dysfunction and the multi-proteinopathies (α-synuclein-, APP- and Aβ-aggregates) in nGD.


PLOS ONE | 2013

Substrate Compositional Variation with Tissue/Region and Gba1 Mutations in Mouse Models–Implications for Gaucher Disease

Ying Sun; Wujuan Zhang; You-Hai Xu; Brian Quinn; Nupur Dasgupta; Benjamin Liou; Kenneth D. R. Setchell; Gregory A. Grabowski

Gaucher disease results from GBA1 mutations that lead to defective acid β-glucosidase (GCase) mediated cleavage of glucosylceramide (GC) and glucosylsphingosine as well as heterogeneous manifestations in the viscera and CNS. The mutation, tissue, and age-dependent accumulations of different GC species were characterized in mice with Gba1 missense mutations alone or in combination with isolated saposin C deficiency (C*). Gba1 heteroallelism for D409V and null alleles (9V/null) led to GC excesses primarily in the visceral tissues with preferential accumulations of lung GC24∶0, but not in liver, spleen, or brain. Age-dependent increases of different GC species were observed. The combined saposin C deficiency (C*) with V394L homozygosity (4L;C*) showed major GC18∶0 degradation defects in the brain, whereas the analogous mice with D409H homozygosity and C* (9H;C*) led to all GC species accumulating in visceral tissues. Glucosylsphingosine was poorly degraded in brain by V394L and D409H GCases and in visceral tissues by D409V GCase. The neonatal lethal N370S/N370S genotype had insignificant substrate accumulations in any tissue. These results demonstrate age, organ, and mutation-specific quantitative differences in GC species and glucosylsphingosine accumulations that can have influence in the tissue/regional expression of Gaucher disease phenotypes.


BMC Genomics | 2011

Global gene expression profile progression in Gaucher disease mouse models

You-Hai Xu; Li Jia; Brian Quinn; Matthew Zamzow; Keith F. Stringer; Bruce J. Aronow; Ying Sun; Wujuan Zhang; Kenneth D. R. Setchell; Gregory A. Grabowski

BackgroundGaucher disease is caused by defective glucocerebrosidase activity and the consequent accumulation of glucosylceramide. The pathogenic pathways resulting from lipid laden macrophages (Gaucher cells) in visceral organs and their abnormal functions are obscure.ResultsTo elucidate this pathogenic pathway, developmental global gene expression analyses were conducted in distinct Gba1 point-mutated mice (V394L/V394L and D409 V/null). About 0.9 to 3% of genes had altered expression patterns (≥ ± 1.8 fold change), representing several categories, but particularly macrophage activation and immune response genes. Time course analyses (12 to 28 wk) of INFγ-regulated pro-inflammatory (13) and IL-4-regulated anti-inflammatory (11) cytokine/mediator networks showed tissue differential profiles in the lung and liver of the Gba1 mutant mice, implying that the lipid-storage macrophages were not functionally inert. The time course alterations of the INFγ and IL-4 pathways were similar, but varied in degree in these tissues and with the Gba1 mutation.ConclusionsBiochemical and pathological analyses demonstrated direct relationships between the degree of tissue glucosylceramides and the gene expression profile alterations. These analyses implicate IFNγ-regulated pro-inflammatory and IL-4-regulated anti-inflammatory networks in differential disease progression with implications for understanding the Gaucher disease course and pathophysiology.


Molecular Genetics and Metabolism | 2008

Dependence of reversibility and progression of mouse neuronopathic Gaucher disease on acid β-glucosidase residual activity levels

You-Hai Xu; Rachel A. Reboulet; Brian Quinn; Joerg Huelsken; David P. Witte; Gregory A. Grabowski

Genetic and chemically induced neuronopathic mouse models of Gaucher disease were developed to facilitate understanding of the reversibility and/or progression of CNS involvement. The lethality of the skin permeability barrier defect of the complete gene knock out [gba, (glucocerebrosidase) GCase] was avoided by conditional reactivation of a low activity allele (D409H) in keratinocytes (kn-9H). In kn-9H mice, progressive CNS disease and massive glucosylceramide storage in tissues led to death from CNS involvement by the age of 14 days. Conduritol B epoxide (CBE, a covalent inhibitor of GCase) treatment (for 8-12 days) of wild type, D409H, D409V or V394L homozygotes recapitulated the CNS phenotype of the kn-9H mice with seizures, tail arching, shaking, tremor, quadriparesis, extensive neuronal degeneration loss and apoptosis, and death by the age of 14 days. Minor CNS abnormalities occurred after daily CBE injections of 100 mg/kg/day for 6 doses, but neuronal degeneration was progressive and glucosylceramide storage persisted in D409V homozygotes in the 2 to 5 months after CBE cessation; wild type and D409H mice had persistent neurological damage without progression. The persistent CNS deterioration, histologic abnormalities, and glucosylceramide storage in the CBE-treated D409V mice revealed a threshold level of GCase activity necessary for the prevention of progression of CNS involvement.

Collaboration


Dive into the You-Hai Xu's collaboration.

Top Co-Authors

Avatar

Gregory A. Grabowski

University of Cincinnati Academic Health Center

View shared research outputs
Top Co-Authors

Avatar

Ying Sun

University of Cincinnati

View shared research outputs
Top Co-Authors

Avatar

Brian Quinn

Cincinnati Children's Hospital Medical Center

View shared research outputs
Top Co-Authors

Avatar

Benjamin Liou

Cincinnati Children's Hospital Medical Center

View shared research outputs
Top Co-Authors

Avatar

Kenneth D. R. Setchell

Cincinnati Children's Hospital Medical Center

View shared research outputs
Top Co-Authors

Avatar

Wujuan Zhang

Cincinnati Children's Hospital Medical Center

View shared research outputs
Top Co-Authors

Avatar

David P. Witte

Cincinnati Children's Hospital Medical Center

View shared research outputs
Top Co-Authors

Avatar

Nupur Dasgupta

Cincinnati Children's Hospital Medical Center

View shared research outputs
Top Co-Authors

Avatar

Sonya Barnes

University of Cincinnati Academic Health Center

View shared research outputs
Top Co-Authors

Avatar

Hong Du

Cincinnati Children's Hospital Medical Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge