Kay F. Macleod
University of Chicago
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Kay F. Macleod.
The Journal of Pathology | 2010
Danielle Glick; Sandra Barth; Kay F. Macleod
Autophagy is a self‐degradative process that is important for balancing sources of energy at critical times in development and in response to nutrient stress. Autophagy also plays a housekeeping role in removing misfolded or aggregated proteins, clearing damaged organelles, such as mitochondria, endoplasmic reticulum and peroxisomes, as well as eliminating intracellular pathogens. Thus, autophagy is generally thought of as a survival mechanism, although its deregulation has been linked to non‐apoptotic cell death. Autophagy can be either non‐selective or selective in the removal of specific organelles, ribosomes and protein aggregates, although the mechanisms regulating aspects of selective autophagy are not fully worked out. In addition to elimination of intracellular aggregates and damaged organelles, autophagy promotes cellular senescence and cell surface antigen presentation, protects against genome instability and prevents necrosis, giving it a key role in preventing diseases such as cancer, neurodegeneration, cardiomyopathy, diabetes, liver disease, autoimmune diseases and infections. This review summarizes the most up‐to‐date findings on how autophagy is executed and regulated at the molecular level and how its disruption can lead to disease. Copyright
The Journal of Pathology | 2010
Sandra Barth; Danielle Glick; Kay F. Macleod
Autophagy is a fundamental and phylogenetically conserved self‐degradation process that is characterized by the formation of double‐layered vesicles (autophagosomes) around intracellular cargo for delivery to lysosomes and proteolytic degradation. The increasing significance attached to autophagy in development and disease in higher eukaryotes has placed greater importance on the validation of reliable, meaningful and quantitative assays to monitor autophagy in live cells and in vivo in the animal. To date, the detection of processed LC3B‐II by western blot or fluorescence studies, together with electron microscopy for autophagosome formation, have been the mainstays for autophagy detection. However, LC3 expression levels can vary markedly between different cell types and in response to different stresses, and there is also concern that over‐expression of tagged versions of LC3 to facilitate imaging and detection of autophagy interferes with the process itself. In addition, the realization that it is not sufficient to monitor static levels of autophagy but to measure ‘autophagic flux’ has driven the development of new or modified approaches to detecting autophagy. Here, we present a critical overview of current methodologies to measure autophagy in cells and in animals. Copyright
Molecular Cell | 1998
Kenneth Y. Tsai; Yanwen Hu; Kay F. Macleod; Denise Crowley; Lili Yamasaki; Tyler Jacks
Mice mutant for the Rb tumor suppressor gene die in mid-gestation with defects in erythropoiesis, cell cycle control, and apoptosis. We show here that embryos mutant for both Rb and its downstream target E2f-1 demonstrate significant suppression of apoptosis and S phase entry in certain tissues compared to Rb mutants, implicating E2f-1 as a critical mediator of these effects. Up-regulation of the p53 pathway, required for cell death in these cells in Rb mutants, is also suppressed in the Rb/E2f-1 double mutants. However, double mutants have defects in cell cycle regulation and apoptosis in some tissues and die at approximately E17.0 with anemia and defective skeletal muscle and lung development, demonstrating that E2F-1 regulation is not the sole function of pRB in development.
The EMBO Journal | 1996
Kay F. Macleod; Hu Y; Tyler Jacks
Extensive apoptosis occurs in the nervous system of mouse embryos homozygous mutant for a targeted disruption of the retinoblastoma (Rb) gene. This cell death is present in both the central (CNS) and peripheral nervous systems (PNS) and is associated with abnormal S phase entry of normally post‐mitotic neurons. Aberrant proliferation in the CNS correlates with increased free E2F DNA binding activity and increased expression of cyclin E, an E2F target gene and critical cell cycle regulator. Cell death in the CNS is accompanied by increased levels of the p53 tumor suppressor gene product and increased expression of the p53 target gene, p21Waf‐1/Cip‐1. However, induction of p53 is not observed in the PNS of Rb‐mutant embryos, nor does loss of p53 function inhibit cell death in the PNS. Surprisingly, p21Waf‐1/Cip‐1 is induced in the sensory ganglia of Rb‐mutant embryos in a p53‐independent manner. Although loss of p53 gene function prevents cell death in the CNS of Rb‐mutant embryos, it does not restore normal proliferative control.
Trends in Biochemical Sciences | 1992
Kay F. Macleod; Dominique Leprince; Dominique Stehelin
Ets proteins have a conserved DNA-binding domain and regulate transcriptional initiation from a variety of cellular and viral gene promoter and enhancer elements. Some members of the Ets family, Ets-1 and Ets-2, cooperate in transcription with the AP-1 transcription factor, the product of the proto-oncogene families, fos and jun, while others, Elk-1 and SAP-1, form ternary complexes with the serum response factor (SRF). Certain ets gene family members possess transforming activity while others are activated by proviral integration in erythroleukaemias.
Molecular and Cellular Biology | 2007
Kristin Tracy; Benjamin Dibling; Benjamin T. Spike; James R. Knabb; Paul T. Schumacker; Kay F. Macleod
ABSTRACT Hypoxia and nutrient deprivation are environmental stresses governing the survival and adaptation of tumor cells in vivo. We have identified a novel role for the Rb tumor suppressor in protecting against nonapoptotic cell death in the developing mouse fetal liver, in primary mouse embryonic fibroblasts, and in tumor cell lines. Loss of pRb resulted in derepression of BNip3, a hypoxia-inducible member of the Bcl-2 superfamily of cell death regulators. We identified BNIP3 as a direct target of pRB/E2F-mediated transcriptional repression and showed that pRB attenuates the induction of BNIP3 by hypoxia-inducible factor to prevent autophagic cell death. BNIP3 was essential for hypoxia-induced autophagy, and its ability to promote autophagosome formation was enhanced under conditions of nutrient deprivation. Knockdown of BNIP3 reduced cell death, and remaining deaths were necrotic in nature. These studies identify BNIP3 as a key regulator of hypoxia-induced autophagy and suggest a novel role for the RB tumor suppressor in preventing nonapoptotic cell death by limiting the extent of BNIP3 induction in cells.
Frontiers in Oncology | 2013
Michelle L Boland; Aparajita H Chourasia; Kay F. Macleod
A mechanistic understanding of how mitochondrial dysfunction contributes to cell growth and tumorigenesis is emerging beyond Warburg as an area of research that is under-explored in terms of its significance for clinical management of cancer. Work discussed in this review focuses less on the Warburg effect and more on mitochondria and how dysfunctional mitochondria modulate cell cycle, gene expression, metabolism, cell viability, and other established aspects of cell growth and stress responses. There is increasing evidence that key oncogenes and tumor suppressors modulate mitochondrial dynamics through important signaling pathways and that mitochondrial mass and function vary between tumors and individuals but the significance of these events for cancer are not fully appreciated. We explore the interplay between key molecules involved in mitochondrial fission and fusion and in apoptosis, as well as in mitophagy, biogenesis, and spatial dynamics of mitochondria and consider how these distinct mechanisms are coordinated in response to physiological stresses such as hypoxia and nutrient deprivation. Importantly, we examine how deregulation of these processes in cancer has knock on effects for cell proliferation and growth. We define major forms of mitochondrial dysfunction and address the extent to which the functional consequences of such dysfunction can be determined and exploited for cancer diagnosis and treatment.
Cancer Cell | 2011
Thomas De Raedt; Zandra E. Walton; Jessica L. Yecies; Danan Li; Yimei Chen; Clare F. Malone; Ophélia Maertens; Seung Min Jeong; Roderick T. Bronson; Valerie S. LeBleu; Raghu Kalluri; Emmanuel Normant; Marcia C. Haigis; Brendan D. Manning; Kwok-Kin Wong; Kay F. Macleod; Karen Cichowski
Ras-driven tumors are often refractory to conventional therapies. Here we identify a promising targeted therapeutic strategy for two Ras-driven cancers: Nf1-deficient malignancies and Kras/p53 mutant lung cancer. We show that agents that enhance proteotoxic stress, including the HSP90 inhibitor IPI-504, induce tumor regression in aggressive mouse models, but only when combined with rapamycin. These agents synergize by promoting irresolvable ER stress, resulting in catastrophic ER and mitochondrial damage. This process is fueled by oxidative stress, which is caused by IPI-504-dependent production of reactive oxygen species, and the rapamycin-dependent suppression of glutathione, an important endogenous antioxidant. Notably, the mechanism by which these agents cooperate reveals a therapeutic paradigm that can be expanded to develop additional combinations.
Current Opinion in Genetics & Development | 2000
Kay F. Macleod
Although tumor suppressor genes continue to be discovered, the most recent advances have been made in attributing new and exciting functions to existing ones - such as the apparent role of VHL as a regulator of proteolysis. Great insights have also come from piecing genes together into pathways and networks. For instance the discovery that cyclin D1 is regulated by beta-catenin/Tcf-4 allows us to tie the APC pathway to the RB pathway and cell cycle control. Similarly, tumor suppressor genes have been fitted together with oncogenes into the various pathways that regulate apoptosis such that tumor suppressor function is now attributed to some of the basic components of the apoptotic machinery, such as caspases and Apaf-1. The great pace at which mouse models of tumorigenesis continue to advance our knowledge of tumor suppressor gene function has led us to look anew at the role of genes such as TCF-1 and SMAD-3 in human cancer. Finally, the realisation that different growth regulatory pathways give rise to generic signals suggests that future work may lie in integrating the signals from different pathways and in understanding the importance of protein levels to cellular function.
The Journal of Pathology | 1999
Kay F. Macleod; Tyler Jacks
The generation of mice designed to overexpress activated forms of oncogenes or carrying targeted mutations in tumour suppressor genes, has allowed scientists to causally link the function of these genes with specific tumour processes, such as proliferation, apoptosis, angiogenesis or metastasis. In addition, these mice have been interbred to assess the extent of cooperativity between different genetic lesions in disease progression, leading to a greater understanding of the multi‐stage nature of tumourigenesis. The effect of genetic mutations is often influenced by the genetic background of the mouse and by analysing strain‐dependent phenotypes, modifier loci have been identified. Although genetic mutations in mouse and humans do not always lead to the same tumour spectrum, the underlying molecular mechanisms are frequently relevant to both species. Furthermore, new technical approaches creating conditional mouse mutants which develop tumours in a tissue‐specific manner, will allow the effect of mutation of certain genes to be studied in specific tissues, free from the fatal effects of the mutation in other clinically less relevant tissues. Several exising mouse strains have already been used to develop and test new therapies and conditional mutagenesis will undoubtedly increase the potential use of transgenic mice in understanding and treating cancer. Copyright