Benny Liu
University of Texas Southwestern Medical Center
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Benny Liu.
Proceedings of the National Academy of Sciences of the United States of America | 2009
Benny Liu; Stephen D. Turley; Dennis K. Burns; Anna M. Miller; Joyce J. Repa; John M. Dietschy
Niemann-Pick type C disease is largely attributable to an inactivating mutation of NPC1 protein, which normally aids movement of unesterified cholesterol (C) from the endosomal/lysosomal (E/L) compartment to the cytosolic compartment of cells throughout the body. This defect results in activation of macrophages in many tissues, progressive liver disease, and neurodegeneration. In the npc1−/− mouse, a model of this disease, the whole-animal C pool expands from 2,082 to 4,925 mg/kg body weight (bw) and the hepatic C pool increases from 132 to 1,485 mg/kg bw between birth and 49 days of age. A single dose of 2-hydroxypropyl-β-cyclodextrin (CYCLO) administered at 7 days of age immediately caused this sequestered C to flow from the lysosomes to the cytosolic pool in many organs, resulting in a marked increase in cholesteryl esters, suppression of C but not fatty acid synthesis, down-regulation of genes controlled by sterol regulatory element 2, and up-regulation of many liver X receptor target genes. There was also decreased expression of proinflammatory proteins in the liver and brain. In the liver, where the rate of C sequestration equaled 79 mg·d−1·kg−1, treatment with CYCLO within 24 h increased C movement out of the E/L compartment from near 0 to 233 mg·d−1·kg−1. By 49 days of age, this single injection of CYCLO resulted in a reduction in whole-body C burden of >900 mg/kg, marked improvement in liver function tests, much less neurodegeneration, and, ultimately, significant prolongation of life. These findings suggest that CYCLO acutely reverses the lysosomal transport defect seen in NPC disease.
Journal of Lipid Research | 2010
Benny Liu; Charina M. Ramirez; Anna M. Miller; Joyce J. Repa; Stephen D. Turley; John M. Dietschy
A mutation in NPC1 leads to sequestration of unesterified cholesterol in the late endosomal/lysosomal compartment of every cell culminating in the development of pulmonary, hepatic, and neurodegenerative disease. Acute administration of 2-hydroxypropyl-β-cyclodextrin (CYCLO) rapidly overcomes this transport defect in both the 7-day-old pup and 49-day-old mature npc1−/− mouse, even though this compound is cleared from the body and plasma six times faster in the mature mouse than in the neonatal animal. The liberated cholesterol flows into the cytosolic ester pool, suppresses sterol synthesis, down-regulates SREBP2 and its target genes, and reduces expression of macrophage-associated inflammatory genes. These effects are seen in the liver and brain, as well as in peripheral organs like the spleen and kidney. Only the lung appears to be resistant to these effects. Forty-eight h after CYCLO administration to the 49-day-old animals, fecal acidic, but not neutral, sterol output increases, whole-animal cholesterol burden is reduced, and the hepatic and neurological inflammation is ameliorated. However, lifespan is extended only when the CYCLO is administered to the 7-day-old animals. These studies demonstrate that CYCLO administration acutely reverses the cholesterol transport defect seen in the NPC1 mouse at any age, and this reversal allows the sequestered sterol to be excreted from the body as bile acid.
The Journal of Neuroscience | 2011
Amal Aqul; Benny Liu; Charina M. Ramirez; Andrew A. Pieper; Sandi Jo Estill; Dennis K. Burns; Bing Liu; Joyce J. Repa; Stephen D. Turley; John M. Dietschy
While unesterified cholesterol (C) is essential for remodeling neuronal plasma membranes, its role in certain neurodegenerative disorders remains poorly defined. Uptake of sterol from pericellular fluid requires processing that involves two lysosomal proteins, lysosomal acid lipase, which hydrolyzes C esters, and NPC1 (Niemann-Pick type C1). In systemic tissues, inactivation of either protein led to sterol accumulation and cell death, but in the brain, inactivation of only NPC1 caused C sequestration and neurodegeneration. When injected into the CNS of the npc1−/− mouse, 2-hydroxypropyl-β-cyclodextrin (HP-β-CD), a compound known to prevent this C accumulation, diffused throughout the brain and was excreted with a t½ of 6.5 h. This agent caused suppression of C synthesis, elevation of C esters, suppression of sterol regulatory-binding protein 2 (SREBP2) target genes, and activation of liver X receptor-controlled genes. These findings indicated that HP-β-CD promoted movement of the sequestered C from lysosomes to the metabolically active pool of C in the cytosolic compartment of cells in the CNS. The ED50 for this agent in the brain was ∼0.5 mg/kg, and the therapeutic effect lasted >7 d. Continuous infusion of HP-β-CD into the ventricular system of npc1−/− animals between 3 and 7 weeks of age normalized the biochemical abnormalities and completely prevented the expected neurodegeneration. These studies support the concept that neurons continuously acquire C from interstitial fluid to permit plasma membrane turnover and remodeling. Inactivation of NPC1 leads to lysosomal C sequestration and neurodegeneration, but this is prevented by the continuous, direct administration of HP-β-CD into the CNS.
Journal of Lipid Research | 2008
Benny Liu; Hao Li; Joyce J. Repa; Stephen D. Turley; John M. Dietschy
Niemann-Pick type C (NPC) disease is a multisystem disorder caused primarily by a mutation in the npc1 gene. These studies evaluated the effect of genetic background, deletion of additional genes, and administration of several agents on the age at death in a murine model of this disorder. Such factors as differing strain background or genetic drift within a given background in the npc1−/− mouse significantly altered the age at death and the degree of organ disease. Genetic deletion of Siat9 (GM3 synthetase) or Nr1h2 [liver X receptor (LXR)β] shortened the life of the npc1−/− animals. Daily treatment of the npc1−/− mice with an LXR agonist or administration of a single dose of cyclodextrin, with or without the neurosteroid allopregnanolone, significantly slowed neurodegeneration and increased the lifespan of these animals. These data illustrate that the age at death of the npc1−/− mouse can be significantly influenced by many factors, including differences in strain background, other inactivating gene mutations (Siat9 and lxrβ), and administration of agents such as LXR agonists and, particularly, cyclodextrin. It is currently not clear which of these effects is nonspecific or which might relate directly to the molecular defect present in the NPC1 syndrome.
Pediatric Research | 2010
Charina M. Ramirez; Benny Liu; Anna M. Taylor; Joyce J. Repa; Dennis K. Burns; Arthur G. Weinberg; Stephen D. Turley; John M. Dietschy
Niemann-Pick type C1 (NPC1) disease arises from a mutation inactivating NPC1 protein that normally moves unesterified cholesterol from the late endosomal/lysosomal complex of cells to the cytosolic compartment for processing. As a result, cholesterol accumulates in every tissue of the body causing liver, lung, and CNS disease. Treatment of the murine model of this disease, the npc1−/− mouse, s.c. with β-cyclodextrin (4000 mg/kg) one time each week normalized cellular cholesterol metabolism in the liver and most other organs. At the same time, the hepatic dysfunction seen in the untreated npc1−/− mouse was prevented. The severity of cerebellar neurodegeneration also was ameliorated, although not entirely prevented, and the median lifespan of the animals was doubled. However, in contrast to these other organs, lung showed progressive macrophage infiltration with development of lipoid pneumonitis. These studies demonstrated that weekly cyclodextrin administration overcomes the lysosomal transport defect associated with the NPC1 mutation, nearly normalizes hepatic and whole animal cholesterol pools, and prevents the development of liver disease. Furthermore, this treatment slows cerebellar neurodegeneration but has little or no effect on the development of progressive pulmonary disease.
Nature Genetics | 2013
Christie M. Buchovecky; Stephen D. Turley; Hannah M. Brown; Stephanie M. Kyle; Jeffrey G. McDonald; Benny Liu; Andrew A. Pieper; Wenhui Huang; David M. Katz; David W. Russell; Jay Shendure; Monica J. Justice
Mutations in MECP2, encoding methyl CpG-binding protein 2, cause Rett syndrome, the most severe autism spectrum disorder. Re-expressing Mecp2 in symptomatic Mecp2-null mice markedly improves function and longevity, providing hope that therapeutic intervention is possible in humans. To identify pathways in disease pathology for therapeutic intervention, we carried out a dominant N-ethyl-N-nitrosourea (ENU) mutagenesis suppressor screen in Mecp2-null mice and isolated five suppressors that ameliorate the symptoms of Mecp2 loss. We show that a stop codon mutation in Sqle, encoding squalene epoxidase, a rate-limiting enzyme in cholesterol biosynthesis, underlies suppression in one line. Subsequently, we also show that lipid metabolism is perturbed in the brains and livers of Mecp2-null male mice. Consistently, statin drugs improve systemic perturbations of lipid metabolism, alleviate motor symptoms and confer increased longevity in Mecp2 mutant mice. Our genetic screen therefore points to cholesterol homeostasis as a potential target for the treatment of patients with Rett syndrome.
Journal of Lipid Research | 2007
Eduardo P. Beltroy; Benny Liu; John M. Dietschy; Stephen D. Turley
Niemann-Pick type C (NPC) disease is a multisystem disorder resulting from mutations in the NPC1 gene that encodes a protein involved in intracellular cholesterol trafficking. Significant liver dysfunction is frequently seen in patients with this disease. The current studies used npc1 mutant mice to investigate the association between liver dysfunction and unesterified cholesterol accumulation, a hallmark of NPC disease. Data from 92 npc1−/− mice (age range, 9–56 days) revealed a significant positive correlation between the plasma activities of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) and whole liver cholesterol content. In 56 day old npc1−/− mice that had been fed from 35 days of age a rodent diet or the same diet containing either cholesterol (1.0%, w/w) or ezetimibe (a sterol absorption inhibitor; 0.0125%, w/w), whole liver cholesterol content averaged 33.5 ± 1.1, 87.9 ± 1.7, and 20.8 ± 0.9 mg, respectively. Again, plasma ALT and AST activities were positively correlated with hepatic cholesterol content. In contrast, plasma transaminase levels remained in the normal range in npc1+/+ mice, in which hepatic esterified cholesterol content had been increased by 72-fold by feeding a high-cholesterol, high-fat diet. These studies suggest that the late endosomal/lysosomal content of unesterified cholesterol correlates with cell damage in NPC disease.
Hepatology | 2013
Stuart A. Scott; Benny Liu; Irina Nazarenko; Suparna Martis; Julia Kozlitina; Yao Yang; Charina M. Ramirez; Yumi Kasai; Tommy Hyatt; Inga Peter; Robert J. Desnick
Cholesteryl ester storage disease (CESD) and Wolman disease are autosomal recessive later‐onset and severe infantile disorders, respectively, which result from the deficient activity of lysosomal acid lipase (LAL). LAL is encoded by LIPA (10q23.31) and the most common mutation associated with CESD is an exon 8 splice junction mutation (c.894G>A; E8SJM), which expresses only ∼3%‐5% of normally spliced LAL. However, the frequency of c.894G>A is unknown in most populations. To estimate the prevalence of CESD in different populations, the frequencies of the c.894G>A mutation were determined in 10,000 LIPA alleles from healthy African‐American, Asian, Caucasian, Hispanic, and Ashkenazi Jewish individuals from the greater New York metropolitan area and 6,578 LIPA alleles from African‐American, Caucasian, and Hispanic subjects enrolled in the Dallas Heart Study. The combined c.894G>A allele frequencies from the two cohorts ranged from 0.0005 (Asian) to 0.0017 (Caucasian and Hispanic), which translated to carrier frequencies of 1 in 1,000 to ∼1 in 300, respectively. No African‐American heterozygotes were detected. Additionally, by surveying the available literature, c.894G>A was estimated to account for 60% (95% confidence interval [CI]: 51%‐69%) of reported mutations among multiethnic CESD patients. Using this estimate, the predicted prevalence of CESD in the Caucasian and Hispanic populations is ∼0.8 per 100,000 (∼1 in 130,000; 95% CI: ∼1 in 90,000 to 1 in 170,000). Conclusion: These data indicate that CESD may be underdiagnosed in the general Caucasian and Hispanic populations, which is important since clinical trials of enzyme replacement therapy for LAL deficiency are currently being developed. Moreover, future studies on CESD prevalence in African and Asian populations may require full‐gene LIPA sequencing to determine heterozygote frequencies, since c.894G>A is not common in these racial groups. (HEPATOLOGY 2013;53:958–965)
Journal of Lipid Research | 2012
Anna M. Taylor; Bing Liu; Yelenis Mari; Benny Liu; Joyce J. Repa
An injection of 2-hydroxypropyl-β-cyclodextrin (HP-β-CD) to mice lacking Niemann Pick type C (NPC) protein results in delayed neurodegeneration, decreased inflammation, and prolonged lifespan. Changes in sterol balance observed in Npc1−/− mice 24 h after HP-β-CD administration suggest that HP-β-CD facilitates the release of accumulated lysosomal cholesterol, the molecular hallmark of this genetic disorder. Current studies were performed to evaluate the time course of HP-β-CD effects. Within 3 h after HP-β-CD injection, decreases in cholesterol synthesis rates and increases in cholesteryl ester levels were detected in tissues of Npc1−/− mice. The levels of RNAs for target genes of sterol-sensing transcription factors were altered by 6 h in liver, spleen, and ileum. Despite the cholesterol-binding capacity of HP-β-CD, there was no evidence of increased cholesterol in plasma or urine of treated Npc1−/− mice, suggesting that HP-β-CD does not carry sterol from the lysosome into the bloodstream for ultimate urinary excretion. Similar changes in sterol balance were observed in cultured cells from Npc1−/− mice using HP-β-CD and sulfobutylether-β-CD, a variant that can interact with sterol but not facilitate its solubilization. Taken together, our results demonstrate that HP-β-CD works in cells of Npc1−/− mice by rapidly liberating lysosomal cholesterol for normal sterol processing within the cytosolic compartment.
Journal of Lipid Research | 2011
Charina M. Ramirez; Benny Liu; Amal Aqul; Anna M. Taylor; Joyce J. Repa; Stephen D. Turley; John M. Dietschy
Lipoprotein cholesterol taken up by cells is processed in the endosomal/lysosomal (E/L) compartment by the sequential action of lysosomal acid lipase (LAL), Niemann-Pick C2 (NPC2), and Niemann-Pick C1 (NPC1). Inactivation of NPC2 in mouse caused sequestration of unesterified cholesterol (UC) and expanded the whole animal sterol pool from 2,305 to 4,337 mg/kg. However, this pool increased to 5,408 and 9,480 mg/kg, respectively, when NPC1 or LAL function was absent. The transport defect in mutants lacking NPC2 or NPC1, but not in those lacking LAL, was reversed by cyclodextrin (CD), and the ED50 values for this reversal varied from ∼40 mg/kg in kidney to >20,000 mg/kg in brain in both groups. This reversal occurred only with a CD that could interact with UC. Further, a CD that could interact with, but not solubilize, UC still overcame the transport defect. These studies showed that processing and export of sterol from the late E/L compartment was quantitatively different in mice lacking LAL, NPC2, or NPC1 function. In both npc2−/− and npc1−/− mice, the transport defect was reversed by a CD that interacted with UC, likely at the membrane/bulk-water interface, allowing sterol to move rapidly to the export site of the E/L compartment.
Collaboration
Dive into the Benny Liu's collaboration.
University of Texas Health Science Center at San Antonio
View shared research outputs