Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Berlin Londono-Renteria is active.

Publication


Featured researches published by Berlin Londono-Renteria.


PLOS Pathogens | 2015

Dengue Virus Infection of Aedes aegypti Requires a Putative Cysteine Rich Venom Protein

Berlin Londono-Renteria; Andrea Troupin; Michael J. Conway; Diana Vesely; Michael Ledizet; Christopher M. Roundy; Erin Cloherty; Samuel Jameson; Dana L. Vanlandingham; Stephen Higgs; Erol Fikrig; Tonya M. Colpitts

Dengue virus (DENV) is a mosquito-borne flavivirus that causes serious human disease and mortality worldwide. There is no specific antiviral therapy or vaccine for DENV infection. Alterations in gene expression during DENV infection of the mosquito and the impact of these changes on virus infection are important events to investigate in hopes of creating new treatments and vaccines. We previously identified 203 genes that were ≥5-fold differentially upregulated during flavivirus infection of the mosquito. Here, we examined the impact of silencing 100 of the most highly upregulated gene targets on DENV infection in its mosquito vector. We identified 20 genes that reduced DENV infection by at least 60% when silenced. We focused on one gene, a putative cysteine rich venom protein (SeqID AAEL000379; CRVP379), whose silencing significantly reduced DENV infection in Aedes aegypti cells. Here, we examine the requirement for CRVP379 during DENV infection of the mosquito and investigate the mechanisms surrounding this phenomenon. We also show that blocking CRVP379 protein with either RNAi or specific antisera inhibits DENV infection in Aedes aegypti. This work identifies a novel mosquito gene target for controlling DENV infection in mosquitoes that may also be used to develop broad preventative and therapeutic measures for multiple flaviviruses.


Parasites & Vectors | 2014

Infection with dengue-2 virus alters proteins in naturally expectorated saliva of Aedes aegypti mosquitoes

Daniel M. Chisenhall; Rebecca C. Christofferson; Michael K. McCracken; Ann-Marie Johnson; Berlin Londono-Renteria; Christopher N. Mores

BackgroundDengue virus (DENV) is responsible for up to approximately 300 million infections and an increasing number of deaths related to severe manifestations each year in affected countries throughout the tropics. It is critical to understand the drivers of this emergence, including the role of vector-virus interactions. When a DENV-infected Aedes aegypti mosquito bites a vertebrate, the virus is deposited along with a complex mixture of salivary proteins. However, the influence of a DENV infection upon the expectorated salivary proteome of its vector has yet to be determined.MethodsTherefore, we conducted a proteomic analysis using 2-D gel electrophoresis coupled with mass spectrometry based protein identification comparing the naturally expectorated saliva of Aedes aegypti infected with DENV-2 relative to that of uninfected Aedes aegypti.ResultsSeveral proteins were found to be differentially expressed in the saliva of DENV-2 infected mosquitoes, in particular proteins with anti-hemostatic and pain inhibitory functions were significantly reduced. Hypothetical consequences of these particular protein reductions include increased biting rates and transmission success, and lead to alteration of transmission potential as calculated in our vectorial capacity model.ConclusionsWe present our characterizations of these changes with regards to viral transmission and mosquito blood-feeding success. Further, we conclude that our proteomic analysis of Aedes aegypti saliva altered by DENV infection provides a unique opportunity to identify pro-viral impacts key to virus transmission.


PLOS ONE | 2013

Use of Anti-Aedes aegypti Salivary Extract Antibody Concentration to Correlate Risk of Vector Exposure and Dengue Transmission Risk in Colombia

Berlin Londono-Renteria; Jenny C. Cardenas; Lucio D. Cardenas; Rebecca C. Christofferson; Daniel M. Chisenhall; Dawn M. Wesson; Michael K. McCracken; Daisy Carvajal; Christopher N. Mores

Norte de Santander is a region in Colombia with a high incidence of dengue virus (DENV). In this study, we examined the serum concentration of anti-Aedes salivary gland extract (SGE) antibodies as a biomarker of DENV infection and transmission, and assessed the duration of anti-SGE antibody concentration after exposure to the vector ceased. We also determined whether SGE antibody concentration could differentiate between positive and negative DENV infected individuals and whether there are differences in exposure for each DENV serotype. We observed a significant decrease in the concentration of IgG antibodies at least 40 days after returning to an “Ae. aegypti-free” area. In addition, we found significantly higher anti-SGE IgG concentrations in DENV positive patients with some difference in exposure to mosquito bites among DENV serotypes. We conclude that the concentration of IgG antibodies against SGE is an accurate indicator of risk of dengue virus transmission and disease presence.


PLOS Neglected Tropical Diseases | 2016

Aedes aegypti D7 Saliva Protein Inhibits Dengue Virus Infection.

Michael J. Conway; Berlin Londono-Renteria; Andrea Troupin; Alan M. Watson; William B. Klimstra; Erol Fikrig; Tonya M. Colpitts

Aedes aegypti is the primary vector of several medically relevant arboviruses including dengue virus (DENV) types 1–4. Ae. aegypti transmits DENV by inoculating virus-infected saliva into host skin during probing and feeding. Ae. aegypti saliva contains over one hundred unique proteins and these proteins have diverse functions, including facilitating blood feeding. Previously, we showed that Ae. aegypti salivary gland extracts (SGEs) enhanced dissemination of DENV to draining lymph nodes. In contrast, HPLC-fractionation revealed that some SGE components inhibited infection. Here, we show that D7 proteins are enriched in HPLC fractions that are inhibitory to DENV infection, and that recombinant D7 protein can inhibit DENV infection in vitro and in vivo. Further, binding assays indicate that D7 protein can directly interact with DENV virions and recombinant DENV envelope protein. These data reveal a novel role for D7 proteins, which inhibits arbovirus transmission to vertebrates through a direct interaction with virions.


Parasites & Vectors | 2015

An. gambiae gSG6-P1 evaluation as a proxy for human-vector contact in the Americas: a pilot study

Berlin Londono-Renteria; Papa M. Drame; Thomas Weitzel; Reinaldo Rosas; Crystal Gripping; Jenny C. Cardenas; Marcela Alvares; Dawn M. Wesson; Anne Poinsignon; Franck Remoue; Tonya M. Colpitts

BackgroundDuring blood meal, the female mosquito injects saliva able to elicit an immune response in the vertebrate. This immune response has been proven to reflect the intensity of exposure to mosquito bites and risk of infection for vector transmitted pathogens such as malaria. The peptide gSG6-P1 of An. gambiae saliva has been demonstrated to be antigenic and highly specific to Anopheles as a genus. However, the applicability of gSG6-P1 to measure exposure to different Anopheles species endemic in the Americas has yet to be evaluated. The purpose of this pilot study was to test whether human participants living in American countries present antibodies able to recognize the gSG6-P1, and whether these antibodies are useful as a proxy for mosquito bite exposure and malaria risk.MethodsWe tested human serum samples from Colombia, Chile, and the United States for the presence of IgG antibodies against gSG6-P1 by ELISA. Antibody concentrations were expressed as delta optical density (ΔOD) of each sera tested in duplicates. The difference in the antibody concentrations between groups was tested using the nonparametric Mann Whitney test (independent groups) and the nonparametric Wilcoxon matched-pairs signed rank test (dependent groups). All differences were considered significant with a P < 0.05.ResultsWe found that the concentration of gSG6-P1 antibodies was significantly correlated with malaria infection status and mosquito bite exposure history. People with clinical malaria presented significantly higher concentrations of IgG anti-gSG6-P1 antibodies than healthy controls. Additionally, a significant raise in antibody concentrations was observed in subjects returning from malaria endemic areas.ConclusionOur data shows that gSG6-P1 is a suitable candidate for the evaluation of exposure to Anopheles mosquito bites, risk of malaria transmission, and effectiveness of protection measures against mosquito bites in the Americas.


American Journal of Tropical Medicine and Hygiene | 2015

Long-Lasting Permethrin-Impregnated Clothing Protects Against Mosquito Bites in Outdoor Workers

Berlin Londono-Renteria; Jaymin C. Patel; Meagan F. Vaughn; Sheana Funkhauser; Loganathan Ponnusamy; Crystal Grippin; Sam B. Jameson; Christopher N. Mores; Dawn M. Wesson; Tonya M. Colpitts; Steven R. Meshnick

Outdoor exposure to mosquitoes is a risk factor for many diseases, including malaria and dengue. We have previously shown that long-lasting permethrin-impregnated clothing protects against tick and chigger bites in a double-blind randomized controlled trial in North Carolina outdoor workers. Here, we evaluated whether this clothing is protective against mosquito bites by measuring changes in antibody titers to mosquito salivary gland extracts. On average, there was a 10-fold increase in titer during the spring and summer when mosquito exposure was likely to be the highest. During the first year of the study, the increase in titer in subjects wearing treated uniforms was 2- to 2.5-fold lower than that of control subjects. This finding suggests that long-lasting permethrin-impregnated clothing provided protection against mosquito bites.


Journal of General Virology | 2017

A relevant in vitro human model for the study of Zika virus antibody-dependent enhancement.

Berlin Londono-Renteria; Andrea Troupin; Jenny C. Cardenas; Alex Hall; Omar G. Pérez; Lucio D. Cardenas; Adam Hartstone-Rose; Scott B. Halstead; Tonya M. Colpitts

Zika virus (ZIKV) is a mosquito-borne flavivirus that has recently been responsible for a serious outbreak of disease in South and Central America. Infection with ZIKV has been associated with severe neurological symptoms and the development of microcephaly in unborn fetuses. Many of the regions involved in the current outbreak are known to be endemic for another flavivirus, dengue virus (DENV), which indicates that a large percentage of the population may have pre-existing DENV immunity. Thus, it is vital to investigate what impact pre-existing DENV immunity has on ZIKV infection. Here, we use primary human myeloid cells as a model for ZIKV enhancement in the presence of DENV antibodies. We show that sera containing DENV antibodies from individuals living in a DENV-endemic area are able to enhance ZIKV infection in a human macrophage-derived cell line and primary human macrophages. We also demonstrate altered pro-inflammatory cytokine production in macrophages with enhanced ZIKV infection. Our study indicates an important role for pre-existing DENV immunity on ZIKV infection in primary human immune cells and establishes a relevant in vitro model to study ZIKV antibody-dependent enhancement.


Parasites & Vectors | 2016

Arbovirosis and potential transmission blocking vaccines

Berlin Londono-Renteria; Andrea Troupin; Tonya M. Colpitts

Infectious diseases caused by arboviruses (viruses transmitted by arthropods) are undergoing unprecedented epidemic activity and geographic expansion. With the recent introduction of West Nile virus (1999), chikungunya virus (2013) and Zika virus (2015) to the Americas, stopping or even preventing the expansion of viruses into susceptible populations is an increasing concern. With a few exceptions, available vaccines protecting against arboviral infections are nonexistent and current disease prevention relies on vector control interventions. However, due to the emergence of and rapidly spreading insecticide resistance, different disease control methods are needed. A feasible method of reducing emerging tropical diseases is the implementation of vaccines that prevent or decrease viral infection in the vector. These vaccines are designated ‘transmission blocking vaccines’, or TBVs. Here, we summarize previous TBV work, discuss current research on arboviral TBVs and present several promising TBV candidates.


Journal of Immunology | 2016

A Role for Human Skin Mast Cells in Dengue Virus Infection and Systemic Spread

Andrea Troupin; Devon L. Shirley; Berlin Londono-Renteria; Alan M. Watson; Cody McHale; Alex Hall; Adam Hartstone-Rose; William B. Klimstra; Gregorio Gomez; Tonya M. Colpitts

Dengue virus (DENV) is a mosquito-borne flavivirus that causes serious global human disease and mortality. Skin immune cells are an important component of initial DENV infection and systemic spread. Here, we show that mast cells are a target of DENV in human skin and that DENV infection of skin mast cells induces degranulation and alters cytokine and growth factor expression profiles. Importantly, to our knowledge, we also demonstrate for the first time that DENV localizes within secretory granules in infected skin mast cells. In addition, DENV within extracellular granules was infectious in vitro and in vivo, trafficking through lymph to draining lymph nodes in mice. We demonstrate an important role for human skin mast cells in DENV infection and identify a novel mechanism for systemic spread of DENV infection from the initial peripheral mosquito injection site.


Biochimica et Biophysica Acta | 2016

A novel mosquito ubiquitin targets viral envelope protein for degradation and reduces virion production during dengue virus infection

Andrea Troupin; Berlin Londono-Renteria; Michael J. Conway; Erin Cloherty; Samuel Jameson; Stephen Higgs; Dana L. Vanlandingham; Erol Fikrig; Tonya M. Colpitts

Abstract Background Dengue virus (DENV) is a mosquito-borne flavivirus that causes significant human disease and mortality in the tropics and subtropics. By examining the effects of virus infection on gene expression, and interactions between virus and vector, new targets for prevention of infection and novel treatments may be identified in mosquitoes. We previously performed a microarray analysis of the Aedes aegypti transcriptome during infection with DENV and found that mosquito ubiquitin protein Ub3881 (AAEL003881) was specifically and highly down-regulated. Ubiquitin proteins have multiple functions in insects, including marking proteins for proteasomal degradation, regulating apoptosis and mediating innate immune signaling. Methods We used qRT-PCR to quantify gene expression and infection, and RNAi to reduce Ub3881 expression. Mosquitoes were infected with DENV through blood feeding. We transfected DENV protein expression constructs to examine the effect of Ub3881 on protein degradation. We used site-directed mutagenesis and transfection to determine what amino acids are involved in Ub3881-mediated protein degradation. Immunofluorescence, Co-immunoprecipitation and Western blotting were used to examine protein interactions and co-localization. Results The overexpression of Ub3881, but not related ubiquitin proteins, decreased DENV infection in mosquito cells and live Ae. aegypti. The Ub3881 protein was demonstrated to be involved in DENV envelope protein degradation and reduce the number of infectious virions released. Conclusions We conclude that Ub3881 has several antiviral functions in the mosquito, including specific viral protein degradation. General significance Our data highlights Ub3881 as a target for future DENV prevention strategies in the mosquito transmission vector.

Collaboration


Dive into the Berlin Londono-Renteria's collaboration.

Top Co-Authors

Avatar

Tonya M. Colpitts

University of South Carolina

View shared research outputs
Top Co-Authors

Avatar

Andrea Troupin

University of South Carolina

View shared research outputs
Top Co-Authors

Avatar

Michael J. Conway

Central Michigan University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge