Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Bernard Quemener is active.

Publication


Featured researches published by Bernard Quemener.


Plant Journal | 2009

GDP‐d‐mannose 3,5‐epimerase (GME) plays a key role at the intersection of ascorbate and non‐cellulosic cell‐wall biosynthesis in tomato

Louise Gilbert; Moftah Alhagdow; Adriano Nunes-Nesi; Bernard Quemener; Fabienne Guillon; Brigitte Bouchet; Mireille Faurobert; Barbara Gouble; David Page; Virginie Garcia; Johann Petit; Rebecca Stevens; Mathilde Causse; Alisdair R. Fernie; Marc Lahaye; Pierre Baldet

The GDP-D-mannose 3,5-epimerase (GME, EC 5.1.3.18), which converts GDP-d-mannose to GDP-l-galactose, is generally considered to be a central enzyme of the major ascorbate biosynthesis pathway in higher plants, but experimental evidence for its role in planta is lacking. Using transgenic tomato lines that were RNAi-silenced for GME, we confirmed that GME does indeed play a key role in the regulation of ascorbate biosynthesis in plants. In addition, the transgenic tomato lines exhibited growth defects affecting both cell division and cell expansion. A further remarkable feature of the transgenic plants was their fragility and loss of fruit firmness. Analysis of the cell-wall composition of leaves and developing fruit revealed that the cell-wall monosaccharide content was altered in the transgenic lines, especially those directly linked to GME activity, such as mannose and galactose. In agreement with this, immunocytochemical analyses showed an increase of mannan labelling in stem and fruit walls and of rhamnogalacturonan labelling in the stem alone. The results of MALDI-TOF fingerprinting of mannanase cleavage products of the cell wall suggested synthesis of specific mannan structures with modified degrees of substitution by acetate in the transgenic lines. When considered together, these findings indicate an intimate linkage between ascorbate and non-cellulosic cell-wall polysaccharide biosynthesis in plants, a fact that helps to explain the common factors in seemingly unrelated traits such as fruit firmness and ascorbate content.


Journal of Applied Phycology | 1997

Sugar determination in ulvans by a chemical-enzymatic method coupled to high performance anion exchange chromatography

Bernard Quemener; Marc Lahaye; C. Bobin-Dubigeon

The sugar determination of ulvans, the water-soluble polysaccharides from Ulva sp. and Enteromorpha sp., was optimized by combining partial acid prehydrolysis (2 mol L-1 trifluoroacetic acid, 120°C) with enzymic hydrolysis (with β-D-glucuronidase). The different constitutive sugars (rhamnose, galactose, glucose, xylose, glucuronic acid), released after hydrolysis, were separated by high performance anion-exchange chromatography and determined by pulsed amperometric detection. The ulvanobiouronic acid, β-D-GlcA-(1,4)-L-Rha, which is the main constituent of ulvans was always present after 3 h of trifluoroacetic acid hydrolysis (approx. 2% D.M.) when acid hydrolysis was performed alone but the xylose amount fell to 75% of its maximum value at this time. The optimal duration of 2 mol L−1 trifluoroacetic acid hydrolysis of ulvans (i.e. without any degradation of xylose, rhamnose and glucuronic acid) was 45 min. Additionnal treatment of the partial acid hydrolysate by purified β-D-glucuronidase allowed the hydrolysis of the residual ulvanobiouronic acid in rhamnose and glucuronic acid. High performance anion exchange chromatography coupled to this chemical-enzymic hydrolysis revealed to be a high resolution chromatographic technique for monitoring the hydrolysis of the aldobiouronic acid by β-D-glucuronidase. This method allowed the simultaneous quantitative determination of neutral and acidic sugars and revealed the presence of iduronic acid inulvans.


Food Hydrocolloids | 2002

Determination of the degrees of methylation and acetylation of pectins using a C18 column and internal standards

Sébastien Levigne; M Thomas; M.-C. Ralet; Bernard Quemener; J.-F. Thibault

An improved hplc method for the simultaneous determination of the degrees of methylation and acetylation of pectins has been developed. The proposed method involves saponification in heterogeneous medium followed by the separation of methanol, acetic acid and internal standard on a C18 column and quantification by refractometry. The method is reproducible, accurate, and presents several advantages that are discussed in the present paper.


Plant Physiology | 2004

Isolation from sugar beet cell walls of arabinan oligosaccharides esterified by two ferulic acid monomers

Sébastien Levigne; Marie-Christine Ralet; Bernard Quemener; Brigitte Pollet; Catherine Lapierre; Jean-François Thibault

Side chains of sugar beet (Beta vulgaris) pectins, which are mainly composed of arabinose (Ara) and galactose (Gal) residues, are esterified by ferulic acid units. Enzymatic hydrolysis of beet cell walls yielded several feruloylated oligosaccharides, which were separated by hydrophobic interaction chromatography. Two new oligomers were isolated in the fraction eluted by 25:75 (v/v) ethanol:water. An arabinotriose and an arabinotetraose esterified by two ferulic acid residues were obtained, and their structure was elucidated by mass spectrometry. It is shown that feruloyl groups are linked to O-5 of Ara residues, in addition to the known O-2 position. This work establishes for the first time, to our knowledge, that two neighboring Ara units may be esterified by two ferulic acid units. This close proximity may have important biochemical implications.


The Plant Cell | 2012

Tomato GDSL1 Is Required for Cutin Deposition in the Fruit Cuticle

Anne-Laure Girard; Fabien Mounet; Martine Lemaire-Chamley; Cédric Gaillard; Khalil Elmorjani; Julien Vivancos; Jean-Luc Runavot; Bernard Quemener; Johann Petit; Véronique Germain; Didier Marion; Bénédicte Bakan

This study analyzes the mechanism by which cutin is deposited. GDSL1, which belongs to the GDSL esterase/acylhydrolase family of plant proteins, is found to play a key role in cutin deposition during fruit cuticle development. The plant cuticle consists of cutin, a polyester of glycerol, hydroxyl, and epoxy fatty acids, covered and filled by waxes. While the biosynthesis of cutin building blocks is well documented, the mechanisms underlining their extracellular deposition remain unknown. Among the proteins extracted from dewaxed tomato (Solanum lycopersicum) peels, we identified GDSL1, a member of the GDSL esterase/acylhydrolase family of plant proteins. GDSL1 is strongly expressed in the epidermis of growing fruit. In GDSL1-silenced tomato lines, we observed a significant reduction in fruit cuticle thickness and a decrease in cutin monomer content proportional to the level of GDSL1 silencing. A significant decrease of wax load was observed only for cuticles of the severely silenced transgenic line. Fourier transform infrared (FTIR) analysis of isolated cutins revealed a reduction in cutin density in silenced lines. Indeed, FTIR-attenuated total reflectance spectroscopy and atomic force microscopy imaging showed that drastic GDSL1 silencing leads to a reduction in ester bond cross-links and to the appearance of nanopores in tomato cutins. Furthermore, immunolabeling experiments attested that GDSL1 is essentially entrapped in the cuticle proper and cuticle layer. These results suggest that GDSL1 is specifically involved in the extracellular deposition of the cutin polyester in the tomato fruit cuticle.


Journal of Experimental Botany | 2011

Brachypodium distachyon grain: characterization of endosperm cell walls

Fabienne Guillon; Brigitte Bouchet; Frédéric Jamme; Paul Robert; Bernard Quemener; Cécile Barron; Colette Larré; Paul Dumas; Luc Saulnier

The wild grass Brachypodium distachyon has been proposed as an alternative model species for temperate cereals. The present paper reports on the characterization of B. distachyon grain, placing emphasis on endosperm cell walls. Brachypodium distachyon is notable for its high cell wall polysaccharide content that accounts for ∼52% (w/w) of the endosperm in comparison with 2-7% (w/w) in other cereals. Starch, the typical storage polysaccharide, is low [<10% (w/w)] in the endosperm where the main polysaccharide is (1-3) (1-4)-β-glucan [40% (w/w) of the endosperm], which in all likelihood plays a role as a storage compound. In addition to (1-3) (1-4)-β-glucan, endosperm cells contain cellulose and xylan in significant amounts. Interestingly, the ratio of ferulic acid to arabinoxylan is higher in B. distachyon grain than in other investigated cereals. Feruloylated arabinoxylan is mainly found in the middle lamella and cell junction zones of the storage endosperm, suggesting a potential role in cell-cell adhesion. The present results indicate that B. distachyon grains contain all the cell wall polysaccharides encountered in other cereal grains. Thus, due to its fully sequenced genome, its short life cycle, and the genetic tools available for mutagenesis/transformation, B. distachyon is a good model to investigate cell wall polysaccharide synthesis and function in cereal grains.


Australian Journal of Chemistry | 2009

A Brief and Informationally Rich Naming System for Oligosaccharide Motifs of Heteroxylans Found in Plant Cell Walls

Régis Fauré; Christophe M. Courtin; Jan A. Delcour; Claire Dumon; Craig B. Faulds; Geoffrey B. Fincher; Sébastien Fort; Stephen C. Fry; Sami Halila; Mirjam A. Kabel; Laurice Pouvreau; Bernard Quemener; Alain Rivet; Luc Saulnier; Henk A. Schols; Hugues Driguez; Michael J. O'Donohue

The one-letter code system proposed here is a simple method to accurately describe structurally diverse oligosaccharides derived from heteroxylans. Substitutions or ‘molecular decoration(s)’ of main-chain d-xylosyl moieties are designated by unique letters. Hence, an oligosaccharide is described by a series of single letters, beginning with the non-reducing d-xylosyl unit. Superscripted numbers are used to indicate the linkage position(s) of main-chain substitution(s) and, where necessary, superscripted lowercase letter(s) indicate the nature of non-glycosidic groups (e.g., methyl, acetyl, or phenolic derivative moieties) that can be present on the substituents. Although relatively simple and practical to use, this abbreviated system lends itself to the naming of a large number of different combinations of structural building blocks and substituents. In its present state, this system is, therefore, adequate to name and differentiate all currently known complex oligosaccharides derived from heteroxylans and is sufficiently flexible to accommodate new structures as they become available.


Phytochemistry | 1983

Ciceritol, a pinitol digalactoside form seeds of chickpea, lentil and white lupin

Bernard Quemener; Jean-Marc Brillouet

Abstract A new trisaccharide was isolated from an aqueous ethanolic extract of chick pea ( Cicer arietinum ) cotyledons by preparative PC. The trimethylsilyl derivative of this sugar had the same GC retention time as manninotriose previously wrongly reported in seeds of chickpea and lentil. HPLC analysis allowed a good separation between the new trisaccharide and manninotriose showing that the latter was absent in chickpea and in the other legume seeds under study. The composition and structure of the new sugar were determined by enzymatic hydrolysis assays, GC analysis of alditol acetate derivatives obtained after complete acid hydrolysis, GC analysis of by-products from dilute acid hydrolysis and GC/MS analysis of partially methylated or trideuteriomethylated alditol acetates. The new trisaccharide is an α- d -digalactoside of pinitol and is O -α- d -galactopyranosyl-(1–6)- O -α- d -galactopyranosyl-(1–2)-1 d -4- O -methyl- chiro -inositol. As originating mainly from chickpea the name ciceritol is proposed. The seeds of seven commercially important legumes were analysed by HPLC and GC for cyclitols, cyclitol-derived oligosaccharides and sucrose α- d -galactosides. Ciceritol was detected in chickpea (2.80% per dehulled seed), lentil (1.60%), white lupin (0.65%), soya bean (0.08%) and bean (traces). The contribution of ciceritol and other α- d -galactosides to flatus is discussed on the basis of α- d -galactosidase sensitivity.


Biochimica et Biophysica Acta | 2002

Purification and characterisation of two exo-polygalacturonases from Aspergillus niger able to degrade xylogalacturonan and acetylated homogalacturonan.

Tatsuji Sakamoto; Estelle Bonnin; Bernard Quemener; Jean-François Thibault

Two exo-polygalacturonases (EC 3.2.1.67) were purified from a commercial Aspergillus niger enzyme preparation by ammonium sulfate precipitation, preparative electrofocusing, anion-exchange and size-exclusion chromatographies. The enzymes had molar masses of 82 kDa (exo-PG1) and 56 kDa (exo-PG2). Exo-PG1 was stable over wider pH and temperature ranges than exo-PG2. Addition of 0.01 mM HgCl(2) increased the exo-PG2 activity 3.4 times but did not affect exo-PG1. Analysis of the reaction products of (reduced) pentagalacturonate by high-performance anion-exchange chromatography revealed that both enzymes split the substrate from the non-reducing end in a multi-chain attack mode. Exo-PG1 had a broad specificity towards oligogalacturonates with different degrees of polymerisation, while digalacturonate was the most favorable substrate for exo-PG2. Both enzymes degraded xylogalacturonan from pea hull in an exo manner to produce galacturonic acid and Xyl-GalA disaccharide, as identified by electrospray ionization-ion trap mass spectrometry (ESI-ITMS). Moreover, exo-PGs split acetylated homogalacturonan in an exo manner, producing galacturonic acid and acetylated galacturonic acid, as shown by ESI-ITMS.


Journal of Applied Phycology | 1999

Chemical composition and 13C NMR spectroscopic characterisation of ulvans from Ulva (Ulvales, Chlorophyta)

Marc Lahaye; Enrique Alvarez-Cabal Cimadevilla; Ralph Kuhlenkamp; Bernard Quemener; Vincent Lognoné; Patrick Dion

The chemical composition and structures of several ulvan extracts isolated from various Ulva species were studied. They were all composed mainly of rhamnose, glucuronic acid, xylose, glucose and sulphate with smaller amounts of iduronic acid and traces of galactose. Proteins were also present, most likely as contaminants. Precise quantification of the uronic acid content by chemical-enzymatic hydrolysis coupled to HPAEC-PAD analysis and by colorimetry was not achieved, most likely due to the incomplete hydrolysis of glucuronan segments, inadequate HPAEC-pulsed-amperometric response factor for iduronic acid and to a possible differential colorimetric response of the two uronic acids. 13C NMR spectroscopic investigation of different ulvans demonstrated that they were all based on ulvanobiuronic acid 3-sulphate A and B repeating units [β-D-Glcp A-(l->4)-α-L-Rhap3S and α- L-IdopA-(l->4)-α-L-Rhap3S, respectively] as well as contiguous β l->4 linked D-glucuronic acids possibly occurring either in ulvan or as a separate glucuronan. Marked variations in the content of the repeating structures were seen among the different samples. However, due to the limited number of samples studied, no conclusion was reached concerning the effects of species and ecophysiological conditions on the chemistry of ulvan.

Collaboration


Dive into the Bernard Quemener's collaboration.

Top Co-Authors

Avatar

Marc Lahaye

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Jean-François Thibault

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Marie-Christine Ralet

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Estelle Bonnin

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Luc Saulnier

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Jacqueline Vigouroux

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Brigitte Bouchet

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Fabienne Guillon

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Mathilde Causse

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Sébastien Levigne

Institut national de la recherche agronomique

View shared research outputs
Researchain Logo
Decentralizing Knowledge