Estelle Bonnin
Institut national de la recherche agronomique
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Estelle Bonnin.
Planta | 2004
William G. T. Willats; Lesley McCartney; Clare G. Steele-King; Susan E. Marcus; Andrew J. Mort; M.M.H. Huisman; Gert-Jan W. M. van Alebeek; Henk A. Schols; A.G.J. Voragen; Angélique Le Goff; Estelle Bonnin; Jean-François Thibault; J. Paul Knox
A monoclonal antibody (LM8) was generated with specificity for xyloglacturonan (XGA) isolated from pea (Pisum sativum L.) testae. Characterization of the LM8 epitope indicates that it is a region of XGA that is highly substituted with xylose. Immunocytochemical analysis indicates that this epitope is restricted to loosely attached inner parenchyma cells at the inner face of the pea testa and does not occur in other cells of the testa. Elsewhere in the pea seedling, the LM8 epitope was found only in association with root cap cell development at the root apex. Furthermore, the LM8 epitope is specifically associated with root cap cells in a range of angiosperm species. In embryogenic carrot suspension cell cultures the epitope is abundant at the surface of cell walls of loosely attached cells in both induced and non-induced cultures. The LM8 epitope is the first cell wall epitope to be identified that is specifically associated with a plant cell separation process that results in complete cell detachment.
Carbohydrate Research | 1997
Marc Lahaye; Magali Brunel; Estelle Bonnin
A marine bacterium degrading the water-soluble cell wall polysaccharides from Ulva sp. (ulvan) has been isolated. The good correlation between ulvan degradation monitored by reducing-power, UV absorbance and viscosimetry, indicated that the crude enzymatic extract contains essentially an endo-ulvan lyase activity. This activity was rapidly inhibited by the reaction products which consisted of a series of ulvanobiouronic acid A 3-sulfate [-->4)-beta-D-GlcpA-(1-->4)-alpha-L-Rhap 3-sulfate-(1-->]n with 4-deoxy-L-threo-hex-4-enopyranosiduronic acid at the non-reducing end. Other deviant repeating structures with beta-D-Xylp or alpha-IdopA replacing beta-D-GlcpA in the repeating ulvanobiouronic acid disaccharide and the presence of two consecutive (1-->4) linked beta-D-Glc pA demonstrated the great variability and complexity of ulvan chemical structure.
Applied Biochemistry and Biotechnology | 2002
Laurence Lesage-Meessen; Anne Lomascolo; Estelle Bonnin; Jean-François Thibault; Alain Buléon; Marc Roller; Michèle Asther; Eric Record; Benoit Colonna Ceccaldi; Marcel Asther
A new process involving the filamentous fungi Aspergillus niger and Pycnoporus cinnabarinus has been designed for the release of ferulic acid by enzymic degradation of a cheap and natural agricultural byproduct (autoclaved maize bran) and its biotransformation into vanillic acid and/or vanillin with a limited number of steps. On the one hand, the potentialities of A. niger I-1472 to produce high levels of polysaccharide-degrading enzymes including feruloyl esterases and to transform ferulic acid into vanillic acid were successfully combined for the release of free ferulic acid from autoclaved maize bran. Then vanillic acid was recovered and efficiently transformed into vanillin by P. cinnabarinus MUCL 39533, since 767 mg/L of biotechnologic vanillin could be produced in the presence of cellobiose and XAD-2 resin. On the other hand, 3-d-old high-density cultures of P. cinnabarinus MUCL39533 could be fed with the autoclaved fraction of maize bran as a ferulic acid source and a. niger I-1472 culture filtrate as an extracellular enzyme source. Under these conditions, P. cinnabarinus MUCL39533 was shown to directly biotransform free ferulic acid released from the autoclaved maize bran by A. niger I-1472 enzymes into 584 mg/L of vanillin. These processes, involving physical, enzymic, and fungal treatments, permitted us to produce crystallin vanillin from autoclaved maize bran without any purification step.
Carbohydrate Research | 2002
Estelle Bonnin; Elizabeth Dolo; Angélique Le Goff; Jean-François Thibault
Pectins from sugar beet, lime and apple were degraded by a rhamnogalacturonan hydrolase associated or not with pectin methylesterases and side chain degrading enzymes (galactanase and arabinanase). The composition of the enzymatic mixture was optimised by following the reaction by viscosimetric means. The reaction products were fractionated by ion exchange chromatography. Treatment with all the enzymes released four fractions: (1). 227-247 mg/g of initial pectins and corresponded to neutral sugars from the side chains; (2,3). represented together 184-220 mg/g of pectins and corresponded to rhamnogalacturonan; (4). 533-588 mg/g of pectins and corresponded to homogalacturonan. Lime pectins have the shortest rhamnogalacturonan regions. The molar masses of homogalacturonans were in the range of 16000-43400 g/mol according to the origin of pectins, corresponding to degrees of polymerisation of 85-250. The mode of action of the enzymes used is also discussed.
Planta | 2005
Florence Guillemin; Fabienne Guillon; Estelle Bonnin; Marie-Françoise Devaux; Thérèse Chevalier; J. Paul Knox; Françoise Liners; Jean-François Thibault
Immunolabelling techniques with antibodies specific to partially methyl-esterified homogalacturonan (JIM5: unesterified residues flanked by methylesterified residues. JIM7: methyl-esterified residues flanked by unesterified residues), a blockwise de-esterified homogalacturonan (2F4), 1,4-galactan (LM5) and 1,5-arabinan (LM6) were used to map the distribution of pectin motifs in cell walls of sugar beet root (Beta vulgaris). PME and alkali treatments of sections were used in conjunction with JIM5-7 and 2F4. The JIM7 epitope was abundant and equally distributed in all cells. In storage parenchyma, the JIM5 epitope was restricted to some cell junctions and the lining of intercellular spaces while in vascular tissues it occurred at cell junctions in some phloem walls and in xylem derivatives. After secondary wall formation, the JIM5 epitope was restricted to inner cell wall regions between secondary thickenings. The 2F4 epitope was not detected without de-esterification treatment. PME treatments prior to the use of 2F4 indicated that HG at cell corners was not acetylated. The LM5 epitope was mainly present in the cambial zone and when present in storage parenchyma, it was restricted to the wall region closest to the plasma membrane. The LM6 epitope was widely distributed throughout primary walls but was more abundant in bundles than in medullar ray tissue and storage parenchyma. These data show that the occurrence of oligosaccharide motifs of pectic polysaccharides are spatially regulated in sugar beet root cell walls and that the spatial patterns vary between cell types suggesting that structural variants of pectic polymers are involved in the modulation of cell wall properties.
Enzyme and Microbial Technology | 2002
Estelle Bonnin; Luc Saulnier; Magali Brunel; Cécile Marot; Laurence Lesage-Meessen; Marcel Asther; Jean-François Thibault
Aspergillus niger I-1472 was grown on sugar beet pulp to produce cell wall polysaccharide-degrading enzymes, including feruloyl esterases. Compared to enzymatic activities measured in commercially available mixtures previously used for the release of ferulic acid, the A. niger enzymes were more various. These enzymes were tested to release ferulic acid from sugar beet pulp, maize bran, or autoclaved maize bran. They were as efficient as the commercial mixture to release ferulic acid from sugar beet pulp. On the other hand, they were much more efficient to release ferulic acid from maize bran after autoclaving pretreatment, as 95% of ferulic acid ester were solubilized. Thus, A. niger enzymes exhibited a high interest in the release of ferulic acid from various agro-industrial by-products.
Biochimica et Biophysica Acta | 2002
Estelle Bonnin; A. Le Goff; R. Körner; J. Vigouroux; Peter Roepstorff; J.-F. Thibault
The mode of action of the endopolygalacturonase from Fusarium moniliforme was studied towards a series of pectins with different amounts and distribution patterns of methyl-ester groups. The enzyme hydrolysed the linkages between two galacturonic acid residues according to a multi-chain attack mechanism, at least at the early stage of the reaction. The final percentage of hydrolysis decreased with increasing the degree of methylation. The distribution pattern of the methyl groups affected the rate of hydrolysis as well as the final percentage of hydrolysis, a blockwise distribution being more favourable than a random one. The final products, as analysed by mass spectrometry, included methyl-esterified oligogalacturonates. The detailed analysis of the structure of the oligomers showed that the enzyme was able to accommodate methylated galacturonic acid in its active site, but that methyl-esterification negatively affected the affinity of the enzyme.
Applied and Environmental Microbiology | 2011
Chatchaya Onumpai; Sofia Kolida; Estelle Bonnin; Robert A. Rastall
ABSTRACT To evaluate the fermentation properties of oligosaccharides derived from pectins and their parent polysaccharides, a 5-ml-working-volume, pH- and temperature-controlled fermentor was tested. Six pectic oligosaccharides representing specific substructures found within pectins were prepared. These consisted of oligogalacturonides (average degrees of polymerization [DP] of 5 and 9), methylated oligogalacturonides (average DP of 5), oligorhamnogalacturonides (average DP of 10 as a disaccharide unit of galacturonic acid and rhamnose), oligogalactosides (average DP of 5), and oligoarabinosides (average DP of 6). The influence of these carbohydrates on the human fecal microbiota was evaluated. Use of neutral sugar fractions resulted in an increase in Bifidobacterium populations and gave higher organic acid yields. The Bacteroides-Prevotella group significantly increased on all oligosaccharides except oligogalacturonides with an average DP of 5. The most selective substrates for bifidobacteria were arabinan, galactan, oligoarabinosides, and oligogalactosides.
Biochimica et Biophysica Acta | 2002
Tatsuji Sakamoto; Estelle Bonnin; Bernard Quemener; Jean-François Thibault
Two exo-polygalacturonases (EC 3.2.1.67) were purified from a commercial Aspergillus niger enzyme preparation by ammonium sulfate precipitation, preparative electrofocusing, anion-exchange and size-exclusion chromatographies. The enzymes had molar masses of 82 kDa (exo-PG1) and 56 kDa (exo-PG2). Exo-PG1 was stable over wider pH and temperature ranges than exo-PG2. Addition of 0.01 mM HgCl(2) increased the exo-PG2 activity 3.4 times but did not affect exo-PG1. Analysis of the reaction products of (reduced) pentagalacturonate by high-performance anion-exchange chromatography revealed that both enzymes split the substrate from the non-reducing end in a multi-chain attack mode. Exo-PG1 had a broad specificity towards oligogalacturonates with different degrees of polymerisation, while digalacturonate was the most favorable substrate for exo-PG2. Both enzymes degraded xylogalacturonan from pea hull in an exo manner to produce galacturonic acid and Xyl-GalA disaccharide, as identified by electrospray ionization-ion trap mass spectrometry (ESI-ITMS). Moreover, exo-PGs split acetylated homogalacturonan in an exo manner, producing galacturonic acid and acetylated galacturonic acid, as shown by ESI-ITMS.
Journal of Agricultural and Food Chemistry | 2008
Agata Zykwinska; Marie-Hélène Boiffard; Hanna Kontkanen; Johanna Buchert; Jean-François Thibault; Estelle Bonnin
Green labeled pectins were extracted by an environmentally friendly way using proteases and cellulases being able to act on proteins and cellulose present in cell walls. Pectins were isolated from different plant byproducts, i.e., chicory roots, citrus peel, cauliflower florets and leaves, endive, and sugar beet pulps. Enzymatic extraction was performed at 50 degrees C for 4 h, in order to fulfill the conditions required for microbiological safety of extracted products. High methoxy (HM) pectins of high molar mass were extracted with three different enzyme mixtures. These pectins were subsequently demethylated with two pectin methyl esterases (PMEs), either the fungal PME from Aspergillus aculeatus or the orange PME. It was further demonstrated that high molar mass low methoxy (LM) pectins could also be extracted directly from cell walls by adding the fungal PME to the mixture of protease and cellulase. Moreover, health benefit pectic oligosaccharides, the so-called modified hairy regions, were obtained after enzymatic treatment of the residue recovered after pectin extraction. The enzymatic method demonstrates that it is possible to convert vegetable byproducts into high-added value compounds, such as pectins and pectic oligosaccharides, and thus considerably reduce the amount of these residues generated by food industries.