Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Pabitra K. Nayak is active.

Publication


Featured researches published by Pabitra K. Nayak.


Angewandte Chemie | 2015

Formation of thin films of organic-inorganic perovskites for high-efficiency solar cells.

Samuel D. Stranks; Pabitra K. Nayak; Wei Zhang; Thomas Stergiopoulos; Henry J. Snaith

Organic-inorganic perovskites are currently one of the hottest topics in photovoltaic (PV) research, with power conversion efficiencies (PCEs) of cells on a laboratory scale already competing with those of established thin-film PV technologies. Most enhancements have been achieved by improving the quality of the perovskite films, suggesting that the optimization of film formation and crystallization is of paramount importance for further advances. Here, we review the various techniques for film formation and the role of the solvents and precursors in the processes. We address the role chloride ions play in film formation of mixed-halide perovskites, which is an outstanding question in the field. We highlight the material properties that are essential for high-efficiency operation of solar cells, and identify how further improved morphologies might be achieved.


Energy and Environmental Science | 2016

Efficient perovskite solar cells by metal ion doping

Jacob Tse-Wei Wang; Zhiping Wang; Sandeep Pathak; Wei Zhang; Dane W. deQuilettes; Florencia Wisnivesky-Rocca-Rivarola; Jian Huang; Pabitra K. Nayak; Jay B. Patel; Hanis A. Mohd Yusof; Yana Vaynzof; Rui Zhu; Ivan Ramirez; Jin Zhang; Caterina Ducati; C.R.M. Grovenor; Michael B. Johnston; David S. Ginger; R. J. Nicholas; Henry J. Snaith

Realizing the theoretical limiting power conversion efficiency (PCE) in perovskite solar cells requires a better understanding and control over the fundamental loss processes occurring in the bulk of the perovskite layer and at the internal semiconductor interfaces in devices. One of the main challenges is to eliminate the presence of charge recombination centres throughout the film which have been observed to be most densely located at regions near the grain boundaries. Here, we introduce aluminium acetylacetonate to the perovskite precursor solution, which improves the crystal quality by reducing the microstrain in the polycrystalline film. At the same time, we achieve a reduction in the non-radiative recombination rate, a remarkable improvement in the photoluminescence quantum efficiency (PLQE) and a reduction in the electronic disorder deduced from an Urbach energy of only 12.6 meV in complete devices. As a result, we demonstrate a PCE of 19.1% with negligible hysteresis in planar heterojunction solar cells comprising all organic p and n-type charge collection layers. Our work shows that an additional level of control of perovskite thin film quality is possible via impurity cation doping, and further demonstrates the continuing importance of improving the electronic quality of the perovskite absorber and the nature of the heterojunctions to further improve the solar cell performance.


Advanced Materials | 2016

Structured Organic-Inorganic Perovskite toward a Distributed Feedback Laser.

Michael Saliba; Simon M. Wood; Jay B. Patel; Pabitra K. Nayak; Jian Huang; Jack A. Alexander-Webber; Bernard Wenger; Samuel D. Stranks; Maximilian T. Hörantner; Jacob Tse-Wei Wang; R. J. Nicholas; Laura M. Herz; Michael B. Johnston; Stephen M. Morris; Henry J. Snaith; Moritz Riede

A general strategy for the in-plane structuring of organic-inorganic perovskite films is presented. The method is used to fabricate an industrially relevant distributed feedback (DFB) cavity, which is a critical step toward all-electrially pumped injection laser diodes. This approach opens the prospects of perovskite materials for much improved optical control in LEDs, solar cells, and also toward applications as optical devices.


Materials horizons | 2016

Optical phonons in methylammonium lead halide perovskites and implications for charge transport

Michael Sendner; Pabitra K. Nayak; David A. Egger; Sebastian Beck; Christian Müller; Bernd Epding; Wolfgang Kowalsky; Leeor Kronik; Henry J. Snaith; Annemarie Pucci; Robert Lovrincic

Lead-halide perovskites are promising materials for opto-electronic applications. Recent reports indicated that their mechanical and electronic properties are strongly affected by the lattice vibrations. Herein we report far-infrared spectroscopy measurements of CH3NH3Pb(I/Br/Cl)3 thin films and single crystals at room temperature and a detailed quantitative analysis of the spectra. We find strong broadening and anharmonicity of the lattice vibrations for all three halide perovskites, which indicates dynamic disorder of the lead-halide cage at room temperature. We determine the frequencies of the transversal and longitudinal optical phonons, and use them to calculate, via appropriate models, the static dielectric constants, polaron masses, electron–phonon coupling constants, and upper limits for the phonon-scattering limited charge carrier mobilities. Within the limitations of the model used, we can place an upper limit of 200 cm2 V−1 s−1 for the room temperature charge carrier mobility in MAPbI3 single crystals. Our findings are important for the basic understanding of charge transport processes and mechanical properties in metal halide perovskites.


Journal of Physical Chemistry Letters | 2013

Separating Charges at Organic Interfaces: Effects of Disorder, Hot States, and Electric Field.

Pabitra K. Nayak; K. L. Narasimhan; David Cahen

Charge separation at organic-organic (O-O) interfaces is crucial to how many organic-based optoelectronic devices function. However, the mechanism of formation of spatially separated charge carriers and the role of geminate recombination remain topics of discussion and research. We review critically the contributions of the various factors, including electric fields, long-range order, and excess energy (beyond the minimum needed for photoexcitation), to the probability that photogenerated charge carriers will be separated. Understanding the processes occurring at the O/O interface and their relative importance for effective charge separation is crucial to design efficient solar cells and photodetectors. We stress that electron and hole delocalization after photoinduced charge transfer at the interface is important for efficient free carrier generation. Fewer defects at the interface and long-range order in the materials also improve overall current efficiency in solar cells. In efficient organic cells, external electric fields play only a small role for charge separation.


Nature Communications | 2016

Mechanism for rapid growth of organic–inorganic halide perovskite crystals

Pabitra K. Nayak; David T. Moore; Bernard Wenger; Simantini Nayak; Amir A. Haghighirad; Adam Fineberg; Nakita K. Noel; Obadiah G. Reid; Garry Rumbles; Philipp Kukura; Kylie A. Vincent; Henry J. Snaith

Optoelectronic devices based on hybrid halide perovskites have shown remarkable progress to high performance. However, despite their apparent success, there remain many open questions about their intrinsic properties. Single crystals are often seen as the ideal platform for understanding the limits of crystalline materials, and recent reports of rapid, high-temperature crystallization of single crystals should enable a variety of studies. Here we explore the mechanism of this crystallization and find that it is due to reversible changes in the solution where breaking up of colloids, and a change in the solvent strength, leads to supersaturation and subsequent crystallization. We use this knowledge to demonstrate a broader range of processing parameters and show that these can lead to improved crystal quality. Our findings are therefore of central importance to enable the continued advancement of perovskite optoelectronics and to the improved reproducibility through a better understanding of factors influencing and controlling crystallization.


Journal of Physical Chemistry C | 2016

Interface-Dependent Ion Migration/Accumulation Controls Hysteresis in MAPbI3 Solar Cells

Igal Levine; Pabitra K. Nayak; Jacob Tse-Wei Wang; Nobuya Sakai; Stephan van Reenen; Thomas M. Brenner; Sabyasachi Mukhopadhyay; Henry J. Snaith; Gary Hodes; David Cahen

Hysteresis in the current-voltage characteristics of hybrid organic-inorganic perovskite-based solar cells is one of the fundamental aspects of these cells that we do not understand well. One possible cause, suggested for the hysteresis, is polarization of the perovskite layer under applied voltage and illumination bias, due to ion migration within the perovskite. To study this problem systemically current-voltage characteristics of both regular (light incident through the electron conducting contact) and so-called inverted (light incident through the hole conducting contact) perovskite cells were studied at different temperatures and scan rates. We explain our results by assuming that the effects of scan rate and temperature on hysteresis are strongly correlated to ion migration within the device, with the rate-determining step being ion migration at/across the interfaces of the perovskite layer with the contact materials. By correlating between the scan rate with the measurement temperature we show that the inverted and regular cells operate in different hysteresis regimes, with different activation energies of 0.28+-0.04 eV and 0.59+-0.09 eV, respectively. We suggest that the differences, observed between the two architectures are due to different rates of ion migration close to the interfaces, and conclude that the diffusion coefficient of migrating ions in the inverted cells is 3 orders of magnitude higher than in the regular cells, leading to different accumulation rates of ions near the interfaces. Analysis of VOC as a function of temperature shows that the main recombination mechanism is trap-assisted (Shockley-Read Hall, SRH) in the space charge region, similar to what is the case for other thin film inorganic solar cells.


Nature Communications | 2015

Mode-selective vibrational modulation of charge transport in organic electronic devices

Artem A. Bakulin; Robert Lovrincic; Xi Yu; Oleg Selig; Huib J. Bakker; Yves L. A. Rezus; Pabitra K. Nayak; Alexandr Fonari; Veaceslav Coropceanu; Jean-Luc Brédas; David Cahen

Artem A. Bakulin*, 2, ∗ Robert Lovrinčić*, 4, 5 Yu Xi*, Oleg Selig, Huib J. Bakker, Yves L.A. Rezus, Pabitra K. Nayak, Alexandr Fonari, Veaceslav Coropceanu, Jean-Luc Brédas, 7 and David Cahen † FOM Institute AMOLF, Science Park 104, 1098 XG Amsterdam, The Netherlands Cavendish Laboratory, Univ. of Cambridge, JJ Thomson Avenue, Cambridge CB3OHE, UK Department of Materials and Interfaces, Weizmann Institute of Science, Rehovot, Israel InnovationLab GmbH, 69115 Heidelberg, Germany Institut für Hochfrequenztechnik, TU Braunschweig, 38106 Braunschweig, Germany School of Chemistry and Biochemistry & Center for Organic Photonics and Electronics, Georgia Institute of Technology, 901 Atlantic Drive NW, Atlanta, GA 30332-0400, USA Solar & Photovoltaics Eng. Res. Center, King Abdullah Univ. of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi ArabiaThe soft character of organic materials leads to strong coupling between molecular, nuclear and electronic dynamics. This coupling opens the way to influence charge transport in organic electronic devices by exciting molecular vibrational motions. However, despite encouraging theoretical predictions, experimental realization of such approach has remained elusive. Here we demonstrate experimentally that photoconductivity in a model organic optoelectronic device can be modulated by the selective excitation of molecular vibrations. Using an ultrafast infrared laser source to create a coherent superposition of vibrational motions in a pentacene/C60 photoresistor, we observe that excitation of certain modes in the 1,500–1,700 cm−1 region leads to photocurrent enhancement. Excited vibrations affect predominantly trapped carriers. The effect depends on the nature of the vibration and its mode-specific character can be well described by the vibrational modulation of intermolecular electronic couplings. This presents a new tool for studying electron–phonon coupling and charge dynamics in (bio)molecular materials.


Nature Communications | 2017

Consolidation of the optoelectronic properties of CH 3 NH 3 PbBr 3 perovskite single crystals

Bernard Wenger; Pabitra K. Nayak; Xiaoming Wen; Sameer V. Kesava; Nakita K. Noel; Henry J. Snaith

Ultralow trap densities, exceptional optical and electronic properties have been reported for lead halide perovskites single crystals; however, ambiguities in basic properties, such as the band gap, and the electronic defect densities in the bulk and at the surface prevail. Here, we synthesize single crystals of methylammonium lead bromide (CH3NH3PbBr3), characterise the optical absorption and photoluminescence and show that the optical properties of single crystals are almost identical to those of polycrystalline thin films. We observe significantly longer lifetimes and show that carrier diffusion plays a substantial role in the photoluminescence decay. Contrary to many reports, we determine that the trap density in CH3NH3PbBr3 perovskite single crystals is 1015 cm−3, only one order of magnitude lower than in the thin films. Our enhanced understanding of optical properties and recombination processes elucidates ambiguities in earlier reports, and highlights the discrepancies in the estimation of trap densities from electronic and optical methods.Metal halide perovskites for optoelectronic devices have been extensively studied in two forms: single-crystals or polycrystalline thin films. Using spectroscopic approaches, Wenger et al. show that polycrystalline thin films possess similar optoelectronic properties to single crystals.


Journal of the American Chemical Society | 2017

Solution-Processed Cesium Hexabromopalladate(IV), Cs2PdBr6, for Optoelectronic Applications

Nobuya Sakai; Amir A. Haghighirad; Marina R. Filip; Pabitra K. Nayak; Simantini Nayak; Alexandra J. Ramadan; Zhiping Wang; Feliciano Giustino; Henry J. Snaith

Lead halide perovskites are materials with excellent optoelectronic and photovoltaic properties. However, some hurdles remain prior to commercialization of these materials, such as chemical stability, phase stability, sensitivity to moisture, and potential issues due to the toxicity of lead. Here, we report a new type of lead-free perovskite related compound, Cs2PdBr6. This compound is solution processable, exhibits long-lived photoluminescence, and an optical band gap of 1.6 eV. Density functional theory calculations indicate that this compound has dispersive electronic bands, with electron and hole effective masses of 0.53 and 0.85 me, respectively. In addition, Cs2PdBr6 is resistant to water, in contrast to lead-halide perovskites, indicating excellent prospects for long-term stability. These combined properties demonstrate that Cs2PdBr6 is a promising novel compound for optoelectronic applications.

Collaboration


Dive into the Pabitra K. Nayak's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

N. Periasamy

Tata Institute of Fundamental Research

View shared research outputs
Top Co-Authors

Avatar

Neeraj Agarwal

Tata Institute of Fundamental Research

View shared research outputs
Top Co-Authors

Avatar

K. L. Narasimhan

Tata Institute of Fundamental Research

View shared research outputs
Top Co-Authors

Avatar

Meghan P. Patankar

Tata Institute of Fundamental Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Farman Ali

Tata Institute of Fundamental Research

View shared research outputs
Top Co-Authors

Avatar

David Cahen

Weizmann Institute of Science

View shared research outputs
Researchain Logo
Decentralizing Knowledge