Beth N. Marbois
University of California, Los Angeles
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Beth N. Marbois.
Nature Immunology | 2013
Yoko Kidani; Heidi Elsaesser; M. Benjamin Hock; Laurent Vergnes; Kevin J. Williams; Joseph P. Argus; Beth N. Marbois; Evangelia Komisopoulou; Elizabeth B. Wilson; Timothy F. Osborne; Thomas G. Graeber; Karen Reue; David G. Brooks; Steven J. Bensinger
Newly activated CD8+ T cells reprogram their metabolism to meet the extraordinary biosynthetic demands of clonal expansion; however, the signals that mediate metabolic reprogramming remain poorly defined. Here we demonstrate an essential role for sterol regulatory element–binding proteins (SREBPs) in the acquisition of effector-cell metabolism. Without SREBP signaling, CD8+ T cells were unable to blast, which resulted in attenuated clonal expansion during viral infection. Mechanistic studies indicated that SREBPs were essential for meeting the heightened lipid requirements of membrane synthesis during blastogenesis. SREBPs were dispensable for homeostatic proliferation, which indicated a context-specific requirement for SREBPs in effector responses. Our studies provide insights into the molecular signals that underlie the metabolic reprogramming of CD8+ T cells during the transition from quiescence to activation.
Cancer Research | 2013
Kevin J. Williams; Joseph P. Argus; Yue Zhu; Moses Q. Wilks; Beth N. Marbois; Autumn G. York; Yoko Kidani; Alexandra L. Pourzia; David Akhavan; Dominique N. Lisiero; Evangelia Komisopoulou; Amy H. Henkin; Horacio Soto; Brian T. Chamberlain; Laurent Vergnes; Michael E. Jung; Jorge Z. Torres; Linda M. Liau; Heather R. Christofk; Robert M. Prins; Paul S. Mischel; Karen Reue; Thomas G. Graeber; Steven J. Bensinger
The sterol regulatory element-binding proteins (SREBP) are key transcriptional regulators of lipid metabolism and cellular growth. It has been proposed that SREBP signaling regulates cellular growth through its ability to drive lipid biosynthesis. Unexpectedly, we find that loss of SREBP activity inhibits cancer cell growth and viability by uncoupling fatty acid synthesis from desaturation. Integrated lipid profiling and metabolic flux analysis revealed that cancer cells with attenuated SREBP activity maintain long-chain saturated fatty acid synthesis, while losing fatty acid desaturation capacity. We traced this defect to the uncoupling of fatty acid synthase activity from stearoyl-CoA desaturase 1 (SCD1)-mediated desaturation. This deficiency in desaturation drives an imbalance between the saturated and monounsaturated fatty acid pools resulting in severe lipotoxicity. Importantly, replenishing the monounsaturated fatty acid pool restored growth to SREBP-inhibited cells. These studies highlight the importance of fatty acid desaturation in cancer growth and provide a novel mechanistic explanation for the role of SREBPs in cancer metabolism.
Journal of Biological Chemistry | 2005
Mario H. Barros; Alisha Johnson; Peter Gin; Beth N. Marbois; Catherine F. Clarke; Alexander Tzagoloff
Deletion of the Saccharomyces cerevisiae gene YOL008W, here referred to as COQ10, elicits a respiratory defect as a result of the inability of the mutant to oxidize NADH and succinate. Both activities are restored by exogenous coenzyme Q2. Respiration is also partially rescued by COQ2, COQ7, or COQ8/ABC1, when these genes are present in high copy. Unlike other coq mutants, all of which lack Q6, the coq10 mutant has near normal amounts of Q6 in mitochondria. Coq10p is widely distributed in bacteria and eukaryotes and is homologous to proteins of the “aromatic-rich protein family” Pfam03654 and to members of the START domain superfamily that have a hydrophobic tunnel implicated in binding lipophilic molecules such as cholesterol and polyketides. Analysis of coenzyme Q in polyhistidine-tagged Coq10p purified from mitochondria indicates the presence 0.032–0.034 mol of Q6/mol of protein. We propose that Coq10p is a Q6-binding protein and that in the coq10 mutant Q6 it is not able to act as an electron carrier, possibly because of improper localization.
American Journal of Physiology-renal Physiology | 2008
Ryoichi Saiki; Adam Lunceford; Yuchen Shi; Beth N. Marbois; Rhonda King; Justin Pachuski; Makoto Kawamukai; David L. Gasser; Catherine F. Clarke
Homozygous mice carrying kd (kidney disease) mutations in the gene encoding prenyl diphosphate synthase subunit 2 (Pdss2kd/kd) develop interstitial nephritis and eventually die from end-stage renal disease. The PDSS2 polypeptide in concert with PDSS1 synthesizes the polyisoprenyl tail of coenzyme Q (Q or ubiquinone), a lipid quinone required for mitochondrial respiratory electron transport. We have shown that a deficiency in Q content is evident in Pdss2kd/kd mouse kidney lipid extracts by 40 days of age and thus precedes the onset of proteinuria and kidney disease by several weeks. The presence of the kd (V117M) mutation in PDSS2 does not prevent its association with PDSS1. However, heterologous expression of the kd mutant form of PDSS2 together with PDSS1 in Escherichia coli recapitulates the Q deficiency observed in the Pdss2kd/kd mouse. Dietary supplementation with Q10 provides a dramatic rescue of both proteinuria and interstitial nephritis in the Pdss2kd/kd mutant mice. The results presented suggest that Q may be acting as a potent lipid-soluble antioxidant, rather than by boosting kidney mitochondrial respiration. Such Q10 supplementation may have profound and beneficial effects in treatment of certain forms of focal segmental glomerulosclerosis that mirror the renal disease of the Pdss2kd/kd mouse.
Journal of Biological Chemistry | 2004
Sergio Padilla; Tanya Jonassen; María Jiménez-Hidalgo; Daniel J.M. Fernández-Ayala; Guillermo López-Lluch; Beth N. Marbois; Plácido Navas; Catherine F. Clarke; Carlos Santos-Ocaña
Caenorhabditis elegans clk-1 mutants cannot produce coenzyme Q9 and instead accumulate demethoxy-Q9 (DMQ9). DMQ9 has been proposed to be responsible for the extended lifespan of clk-1 mutants, theoretically through its enhanced antioxidant properties and its decreased function in respiratory chain electron transport. In the present study, we assess the functional roles of DMQ6 in the yeast Saccharomyces cerevisiae. Three mutations designed to mirror the clk-1 mutations of C. elegans were introduced into COQ7, the yeast homologue of clk-1: E233K, predicted to disrupt the di-iron carboxylate site considered essential for hydroxylase activity; L237Stop, a deletion of 36 amino acid residues from the carboxyl terminus; and P175Stop, a deletion of the carboxyl-terminal half of Coq7p. Growth on glycerol, quinone content, respiratory function, and response to oxidative stress were analyzed in each of the coq7 mutant strains. Yeast strains lacking Q6 and producing solely DMQ were respiratory deficient and unable to support 6either NADH-cytochrome c reductase or succinate-cytochrome c reductase activities. DMQ6 failed to protect cells against oxidative stress generated by H2O2 or linolenic acid. Thus, in the yeast model system, DMQ does not support respiratory activity and fails to act as an effective antioxidant. These results suggest that the life span extension observed in the C. elegans clk-1 mutants cannot be attributed to the presence of DMQ per se.
Journal of Biological Chemistry | 2010
Beth N. Marbois; Letian X. Xie; Samuel Choi; Kathleen Hirano; Kyle Hyman; Catherine F. Clarke
Coenzyme Q (ubiquinone or Q) is a crucial mitochondrial lipid required for respiratory electron transport in eukaryotes. 4-Hydroxybenozoate (4HB) is an aromatic ring precursor that forms the benzoquinone ring of Q and is used extensively to examine Q biosynthesis. However, the direct precursor compounds and enzymatic steps for synthesis of 4HB in yeast are unknown. Here we show that para-aminobenzoic acid (pABA), a well known precursor of folate, also functions as a precursor for Q biosynthesis. A hexaprenylated form of pABA (prenyl-pABA) is normally present in wild-type yeast crude lipid extracts but is absent in yeast abz1 mutants starved for pABA. A stable 13C6-isotope of pABA (p- amino[aromatic-13C6]benzoic acid ([13C6]pABA)), is prenylated in either wild-type or abz1 mutant yeast to form prenyl-[13C6]pABA. We demonstrate by HPLC and mass spectrometry that yeast incubated with either [13C6]pABA or [13C6]4HB generate both 13C6-demethoxy-Q (DMQ), a late stage Q biosynthetic intermediate, as well as the final product 13C6-coenzyme Q. Pulse-labeling analyses show that formation of prenyl-pABA occurs within minutes and precedes the synthesis of Q. Yeast utilizing pABA as a ring precursor produce another nitrogen containing intermediate, 4-imino-DMQ6. This intermediate is produced in small quantities in wild-type yeast cultured in standard media and in abz1 mutants supplemented with pABA. We suggest a mechanism where Schiff base-mediated deimination forms DMQ6 quinone, thereby eliminating the nitrogen contributed by pABA. This scheme results in the convergence of the 4HB and pABA pathways in eukaryotic Q biosynthesis and has implications regarding the action of pABA-based antifolates.
Journal of Immunology | 2008
Thai Q. Do; Safiehkhatoon Moshkani; Patricia Castillo; Suda Anunta; Adelina Pogosyan; Annie Cheung; Beth N. Marbois; Kym F. Faull; William Ernst; Su Ming Chiang; Gary Fujii; Catherine F. Clarke; Krishna L. Foster; Edith Porter
Mucosal surfaces provide first-line defense against microbial invasion through their complex secretions. The antimicrobial activities of proteins in these secretions have been well delineated, but the contributions of lipids to mucosal defense have not been defined. We found that normal human nasal fluid contains all major lipid classes (in micrograms per milliliter), as well as lipoproteins and apolipoprotein A-I. The predominant less polar lipids were myristic, palmitic, palmitoleic, stearic, oleic, and linoleic acid, cholesterol, and cholesteryl palmitate, cholesteryl linoleate, and cholesteryl arachidonate. Normal human bronchioepithelial cell secretions exhibited a similar lipid composition. Removal of less-polar lipids significantly decreased the inherent antibacterial activity of nasal fluid against Pseudomonas aeruginosa, which was in part restored after replenishing the lipids. Furthermore, lipids extracted from nasal fluid exerted direct antibacterial activity in synergism with the antimicrobial human neutrophil peptide HNP-2 and liposomal formulations of cholesteryl linoleate and cholesteryl arachidonate were active against P. aeruginosa at physiological concentrations as found in nasal fluid and exerted inhibitory activity against other Gram-negative and Gram-positive bacteria. These data suggest that host-derived lipids contribute to mucosal defense. The emerging concept of host-derived antimicrobial lipids unveils novel roads to a better understanding of the immunology of infectious diseases.
Free Radical Biology and Medicine | 2012
Shauna Hill; Connor R. Lamberson; Libin Xu; Randy To; Hui S. Tsui; Vadim V. Shmanai; Andrei V. Bekish; Agape M. Awad; Beth N. Marbois; Charles R. Cantor; Ned A. Porter; Catherine F. Clarke; Mikhail S. Shchepinov
Polyunsaturated fatty acids (PUFAs) undergo autoxidation and generate reactive carbonyl compounds that are toxic to cells and associated with apoptotic cell death, age-related neurodegenerative diseases, and atherosclerosis. PUFA autoxidation is initiated by the abstraction of bis-allylic hydrogen atoms. Replacement of the bis-allylic hydrogen atoms with deuterium atoms (termed site-specific isotope-reinforcement) arrests PUFA autoxidation due to the isotope effect. Kinetic competition experiments show that the kinetic isotope effect for the propagation rate constant of Lin autoxidation compared to that of 11,11-D(2)-Lin is 12.8 ± 0.6. We investigate the effects of different isotope-reinforced PUFAs and natural PUFAs on the viability of coenzyme Q-deficient Saccharomyces cerevisiae coq mutants and wild-type yeast subjected to copper stress. Cells treated with a C11-BODIPY fluorescent probe to monitor lipid oxidation products show that lipid peroxidation precedes the loss of viability due to H-PUFA toxicity. We show that replacement of just one bis-allylic hydrogen atom with deuterium is sufficient to arrest lipid autoxidation. In contrast, PUFAs reinforced with two deuterium atoms at mono-allylic sites remain susceptible to autoxidation. Surprisingly, yeast treated with a mixture of approximately 20%:80% isotope-reinforced D-PUFA:natural H-PUFA are protected from lipid autoxidation-mediated cell killing. The findings reported here show that inclusion of only a small fraction of PUFAs deuterated at the bis-allylic sites is sufficient to profoundly inhibit the chain reaction of nondeuterated PUFAs in yeast.
Embo Molecular Medicine | 2011
Marni J. Falk; Erzsebet Polyak; Zhe Zhang; Min Peng; Rhonda King; Jonathan S. Maltzman; Ezinne Y. Okwuego; Oksana Horyn; Eiko Nakamaru-Ogiso; Julian Ostrovsky; Letian X. Xie; Jia Yan Chen; Beth N. Marbois; Itzhak Nissim; Catherine F. Clarke; David L. Gasser
Therapy of mitochondrial respiratory chain diseases is complicated by limited understanding of cellular mechanisms that cause the widely variable clinical findings. Here, we show that focal segmental glomerulopathy‐like kidney disease in Pdss2 mutant animals with primary coenzyme Q (CoQ) deficiency is significantly ameliorated by oral treatment with probucol (1% w/w). Preventative effects in missense mutant mice are similar whether fed probucol from weaning or for 3 weeks prior to typical nephritis onset. Furthermore, treating symptomatic animals for 2 weeks with probucol significantly reduces albuminuria. Probucol has a more pronounced health benefit than high‐dose CoQ10 supplementation and uniquely restores CoQ9 content in mutant kidney. Probucol substantially mitigates transcriptional alterations across many intermediary metabolic domains, including peroxisome proliferator‐activated receptor (PPAR) pathway signaling. Probucols beneficial effects on the renal and metabolic manifestations of Pdss2 disease occur despite modest induction of oxidant stress and appear independent of its hypolipidemic effects. Rather, decreased CoQ9 content and altered PPAR pathway signaling appear, respectively, to orchestrate the glomerular and global metabolic consequences of primary CoQ deficiency, which are both preventable and treatable with oral probucol therapy.
Journal of Biological Chemistry | 2006
UyenPhuong C. Tran; Beth N. Marbois; Peter Gin; Melissa Gulmezian; Tanya Jonassen; Catherine F. Clarke
Coenzyme Q (ubiquinone or Q) functions in the respiratory electron transport chain and serves as a lipophilic antioxidant. In the budding yeast Saccharomyces cerevisiae, Q biosynthesis requires nine Coq proteins (Coq1–Coq9). Previous work suggests both an enzymatic activity and a structural role for the yeast Coq7 protein. To define the functional roles of yeast Coq7p we test whether Escherichia coli ubiF can functionally substitute for yeast COQ7. The ubiF gene encodes a flavin-dependent monooxygenase that shares no homology to the Coq7 protein and is required for the final monooxygenase step of Q biosynthesis in E. coli. The ubiF gene expressed at low copy restores growth of a coq7 point mutant (E194K) on medium containing a non-fermentable carbon source, but fails to rescue a coq7 null mutant. However, expression of ubiF from a multicopy vector restores growth and Q synthesis for both mutants, although with a higher efficiency in the point mutant. We attribute the more efficient rescue of the coq7 point mutant to higher steady state levels of the Coq3, Coq4, and Coq6 proteins and to the presence of demethoxyubiquinone, the substrate of UbiF. Coq7p co-migrates with the Coq3 and Coq4 polypeptides as a high molecular mass complex. Here we show that addition of Q to the growth media also stabilizes the Coq3 and Coq4 polypeptides in the coq7 null mutant. The data suggest that Coq7p, and the lipid quinones (demethoxyubiquinone and Q) function to stabilize other Coq polypeptides.