Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Bhagavatula Moorthy is active.

Publication


Featured researches published by Bhagavatula Moorthy.


Indian Journal of Dermatology, Venereology and Leprology | 2009

Determination of oxidative stress in vitiligo by measuring superoxide dismutase and catalase levels in vitiliginous and non-vitiliginous skin

Pv Sravani; N Kishore Babu; K.V.T Gopal; G Raghu Rama Rao; Athota Rama Rao; Bhagavatula Moorthy; T Raghava Rao

BACKGROUND Vitiligo is an acquired disorder characterized by circumscribed depigmented macules devoid of identifiable melanocytes. Complex genetic, immunological, neural and self destructive mechanisms interplay in its pathogenesis. According to autocytotoxic hypothesis, oxidative stress has been suggested to be the initial pathogenic event in melanocyte degeneration. AIMS The aim of our investigation was to evaluate the role of oxidative stress by measuring levels of the antioxidant enzymes superoxide dismutase (SOD) and catalase (CAT) in lesional and normal skin of patients with vitiligo and in the skin of normal controls. METHODS We determined the activity of SOD in lesional and non-lesional skin and CAT in lesional skin only of 25 vitiligo patients and 25 controls by using the spectrophotometric assay and Aebis method, respectively. RESULTS There was statistically significant increase in the levels of SOD in vitiliginous and non vitiliginous skin of patient group compared to the control group (P < 0.001). No significant difference was found between the levels of SOD in lesional skin and non-lesional skin of vitiligo patients. The levels of CAT in the skin of patients were found to be significantly lower than those of controls (P < 0.001). CONCLUSIONS There is increased oxidative stress in vitiligo as is indicated by high levels of SOD and low levels of CAT in the skin of vitiligo patients.


International Journal of Cancer | 2003

Polycyclic aromatic hydrocarbon-inducible DNA adducts: Evidence by 32P-postlabeling and use of knockout mice for Ah receptor-independent mechanisms of metabolic activation in vivo

Sudha R. Kondraganti; Pedro M. Fernández-Salguero; Frank J. Gonzalez; Kenneth S. Ramos; Weiwu Jiang; Bhagavatula Moorthy

There is significant human exposure to polycyclic aromatic hydrocarbons (PAHs), many of which are potent carcinogens in laboratory animals and are suspected human carcinogens. The PAHs are bioactivated by cytochrome P450 (CYP)1A1/1B1 enzymes to reactive intermediates that bind to DNA, a critical step in the initiation of carcinogenesis. The Ah receptor (AHR) plays a critical role in the induction of CYP1 enzymes (i.e., CYP1A1, 1A2 and 1B1) by PAHs such as benzo[a]pyrene (BP) and 3‐methylcholanthrene (MC). In our investigation, we tested the hypothesis that AHR‐null animals are less susceptible to PAH‐induced DNA adduct formation than wild‐type animals. Wild‐type [AHR (+/+)] mice or mice lacking the gene for the AHR were treated with a single dose (100 μmol/kg) of BP or MC, and hepatic DNA adducts were analyzed by 32P‐postlabeling. BP induced multiple hepatic DNA adducts in wild‐type as well as AHR‐null animals, suggesting the existence of AHR‐independent mechanisms for BP metabolic activation. On the other hand, DNA adduct formation was markedly suppressed in AHR‐null animals exposed to MC, although the major MC‐DNA adduct was produced in these animals. Hepatic activities and apoprotein contents of 7‐ethoxyresorufin O‐deethylase (EROD) (CYP1A1) and 7‐methoxyresorufin O‐demethylase (MROD) (CYP1A2) activities were markedly induced by BP and MC in the wild‐type, but not, in AHR‐null animals. CYP1B1 expression was also induced, albeit to a lesser extent by the PAH MC, but not BP, in the wild‐type animals. In conclusion, these results demonstrate the existence of AHR‐ and CYP1A1‐independent mechanisms of PAH metabolic activation in mouse liver, a phenomenon that may have important implications for PAH‐mediated carcinogenesis.


Toxicology Letters | 1997

Induction and decline of hepatic cytochromes P4501A1 and 1A2 in rats exposed to hyperoxia are not paralleled by changes in glutathione S-transferase-α

Bhagavatula Moorthy; Uyen T.-L Nguyen; Sanjiv Gupta; Kerry D. Stewart; Stephen E. Welty; Charles V. Smith

We investigated the effects of hyperoxia on the activities of hepatic ethoxyresorufin O-deethylase (EROD) (CYP1A1), methoxyresorufin O-demethylase (MROD) (CYP1A2), and glutathione transferase-alpha (GST-alpha), and the status of protein thiols (PSH) in male Sprague-Dawley rats. Twenty-four h of hyperoxia more than doubled EROD and MROD activities, which were increased 7.6- and 3.3-fold, respectively, after 48 h of hyperoxia. The increases in EROD and MROD activities were paralleled by enhanced CYP1A1/1A2 apoproteins contents, as detected by Western analysis. At 60 h of hyperoxia, by which time hyperoxic Sprague-Dawley rats display marked respiratory distress, pulmonary edema, and other markers of pulmonary dysfunction, the activities and levels of hepatic CYP1A1 and 1A2 had declined dramatically and returned to levels observed in air-breathing control animals. Hepatic activities of GST-alpha, as well as PSH status, were not altered significantly in the hyperoxic animals at any time point. The marked induction and subsequent decline of hepatic CYP1A1/1A2 activities in rats exposed to hyperoxia suggest that these enzymes may contribute to the mechanisms of injury and/or to adaptive responses to hyperoxic exposures in vivo.


Drug Metabolism Reviews | 2005

Bioactivation of Polycyclic Aromatic Hydrocarbon Carcinogens within the vascular Wall: Implications for Human Atherogenesis

Kenneth S. Ramos; Bhagavatula Moorthy

Atherogenesis is a complex pathogenetic process involving a variety of structural and functional deficits within the arterial wall that culminate in the formation of fibrous atherosclerotic plaques. Cigarette smoking is potentially the most remediable contributor to cardiovascular mortality and morbidity. Among the 4000 plus chemicals present in tobacco and tobacco smoke, polycyclic aromatic hydrocarbons (PAHs) have been firmly implicated in the etiology of atherosclerosis in experimental model systems. However, the molecular mechanisms responsible for PAH-induced vascular injury are not well understood. In this review, we have focused on the mechanisms of bioactivation of PAHs in the vas-culature, and the possible role(s) of cytochrome P4501A and 1B enzymes in the formation of PAH-DNA adducts within the vessel wall, a phenomenon that may contribute to the development of atherosclerotic plaques in humans.


Current Drug Metabolism | 2012

Drug disposition in pathophysiological conditions.

Adarsh Gandhi; Bhagavatula Moorthy; Romi Ghose

Expression and activity of several key drug metabolizing enzymes (DMEs) and transporters are altered in various pathophysiological conditions, leading to altered drug metabolism and disposition. This can have profound impact on the pharmacotherapy of widely used clinically relevant medications in terms of safety and efficacy by causing inter-individual variabilities in drug responses. This review article highlights altered drug disposition in inflammation and infectious diseases, and commonly encountered disorders such as cancer, obesity/diabetes, fatty liver diseases, cardiovascular diseases and rheumatoid arthritis. Many of the clinically relevant drugs have a narrow therapeutic index. Thus any changes in the disposition of these drugs may lead to reduced efficacy and increased toxicity. The implications of changes in DMEs and transporters on the pharmacokinetics/pharmacodynamics of clinically-relevant medications are also discussed. Inflammation-mediated release of pro-inflammatory cytokines and activation of toll-like receptors (TLRs) are known to play a major role in down-regulation of DMEs and transporters. Although the mechanism by which this occurs is unclear, several studies have shown that inflammation-associated cell-signaling pathway and its interaction with basal transcription factors and nuclear receptors in regulation of DMEs and transporters play a significant role in altered drug metabolism. Altered regulation of DMEs and transporters in a multitude of disease states will contribute towards future development of powerful in vitro and in vivo tools in predicting the drug response and opt for better drug design and development. The goal is to facilitate a better understanding of the mechanistic details underlying the regulation of DMEs and transporters in pathophysiological conditions.


Toxicology and Applied Pharmacology | 2011

Prenatal administration of the cytochrome P4501A inducer, Β-naphthoflavone (BNF), attenuates hyperoxic lung injury in newborn mice: implications for bronchopulmonary dysplasia (BPD) in premature infants.

Xanthi I. Couroucli; Yan hong Wei Liang; Weiwu Jiang; Lihua Wang; Roberto Barrios; Peiying Yang; Bhagavatula Moorthy

Supplemental oxygen contributes to the development of bronchopulmonary dysplasia (BPD) in premature infants. In this investigation, we tested the hypothesis that prenatal treatment of pregnant mice (C57BL/6J) with the cytochrome P450 (CYP)1A1 inducer, ß-napthoflavone (BNF), will lead to attenuation of lung injury in newborns (delivered from these dams) exposed to hyperoxia by mechanisms entailing transplacental induction of hepatic and pulmonary CYP1A enzymes. Pregnant mice were administered the vehicle corn oil (CO) or BNF (40 mg/kg), i.p., once daily for 3 days on gestational days (17-19), and newborns delivered from the mothers were either maintained in room air or exposed to hyperoxia (>95% O(2)) for 1-5 days. After 3-5 days of hyperoxia, the lungs of CO-treated mice showed neutrophil infiltration, pulmonary edema, and perivascular inflammation. On the other hand, BNF-pretreated neonatal mice showed decreased susceptibility to hyperoxic lung injury. These mice displayed marked induction of ethoxyresorufin O-deethylase (EROD) (CYP1A1) and methoxyresorufin O-demethylase (MROD) (CYP1A2) activities, and levels of the corresponding apoproteins and mRNA levels until PND 3 in liver, while CYP1A1 expression alone was augmented in the lung. Prenatal BNF did not significantly alter gene expression of pulmonary NAD(P)H quinone reductase (NQO1). Hyperoxia for 24-72 h resulted in increased pulmonary levels of the F(2)-isoprostane 8-iso-PGF(2α), whose levels were decreased in mice prenatally exposed to BNF. In conclusion, our results suggest that prenatal BNF protects newborns against hyperoxic lung injury, presumably by detoxification of lipid hydroperoxides by CYP1A enzymes, a phenomenon that has implications for prevention of BPD in infants.


Cardiovascular Research | 2002

The atherogen 3-methylcholanthrene induces multiple DNA adducts in mouse aortic smooth muscle cells: role of cytochrome P4501B1

Bhagavatula Moorthy; Kimberly P. Miller; Weiwu Jiang; Kenneth S. Ramos

OBJECTIVE 3-Methylcholanthrene (MC), a polycylic aromatic hydrocarbon, induces atherogenesis in mice fed an atherogenic diet. In this study, we tested the hypothesis that MC would induce DNA adducts in mouse aortic smooth muscle cells (SMCs) and that cytochrome P4501B1 (CYP1B1) plays an important role in the activation of MC to genotoxic intermediates. METHODS Cultured SMCs were treated with MC or the vehicle dimethyl sulfoxide (DMSO), and DNA was isolated after 24 h. In some experiments, the cells were pre-treated with the CYP1B1 inhibitor 1-ethynylpyrene (EP) prior to exposure to MC. DNA adducts were determined by the 32P-postlabeling assay. Aryl hydrocarbon hydroxylase assay was measured by fluorimetry. RESULTS MC induced formation of 12 DNA adducts that were not observed in DMSO-treated cells. DNA adduct formation was dose-dependent, with maximum response observed at 3 microM. Pre-treatment of cells with EP dramatically suppressed DNA adduct formation by MC. MC treatment caused induction of CYP1B1, but not CYP1A1. CONCLUSION The induction of high levels of multiple DNA adducts in SMCs by MC suggests that SMCs have a functional enzymatic machinery capable of metabolically activating MC to genotoxic metabolites. The significant inhibition by EP of MC-induced DNA adduct formation indicated that CYP1B1 was the primary CYP enzyme responsible for formation of genotoxic metabolites that may play a role in the induction of atherosclerosis by MC.


Toxicology and Applied Pharmacology | 2008

Regulation of cytochrome P4501A1 expression by hyperoxia in human lung cell lines : Implications for hyperoxic lung injury

Kushal Y. Bhakta; Weiwu Jiang; Xanthi I. Couroucli; Inayat S. Fazili; Kathirvel Muthiah; Bhagavatula Moorthy

Supplemental oxygen, used to treat pulmonary insufficiency in newborns, contributes to the development of bronchopulmonary dysplasia (BPD). Cytochrome P4501A enzymes are induced by hyperoxia in animal models, but their role in human systems is unknown. Here we investigated the molecular mechanisms of induction of CYP1A1 by hyperoxia in human lung cell lines. Three human lung cell lines were exposed to hyperoxia (95% O2) for 0-72 h, and CYP1A1 activities, apoprotein contents, and mRNA levels were determined. Hyperoxia significantly induced CYP1A1 activity and protein contents (2-4 fold), and mRNA levels (30-40 fold) over control in each cell line. Transfection of a CYP1A1 promoter/luciferase reporter construct, followed by hyperoxia (4-72 h), showed marked (2-6 fold) induction of luciferase expression. EMSA and siRNA experiments strongly suggest that the Ah receptor (AHR) is involved in the hyperoxic induction of CYP1A1. MTT reduction assays showed attenuation of cell injury with the CYP1A1 inducer beta-naphthoflavone (BNF). Our results strongly suggest that hyperoxia transcriptionally activates CYP1A1 expression in human lung cell lines by AHR-dependent mechanisms, and that CYP1A1 induction is associated with decreased toxicity. This novel finding of induction of CYP1A1 in the absence of exogenous AHR ligands could lead to novel interventions in the treatment of BPD.


Toxicological Sciences | 2014

Mice deficient in the gene for cytochrome P450 (CYP)1A1 are more susceptible than wild-type to hyperoxic lung injury: evidence for protective role of CYP1A1 against oxidative stress.

Krithika Lingappan; Weiwu Jiang; Lihua Wang; Gangduo Wang; Xanthi I. Couroucli; Binoy Shivanna; Stephen E. Welty; Roberto Barrios; M. Firoze Khan; Daniel W. Nebert; L. Jackson Roberts; Bhagavatula Moorthy

Hyperoxia contributes to acute lung injury in diseases such as acute respiratory distress syndrome in adults and bronchopulmonary dysplasia in premature infants. Cytochrome P450 (CYP)1A1 has been shown to modulate hyperoxic lung injury. The mechanistic role(s) of CYP1A1 in hyperoxic lung injury in vivo is not known. In this investigation, we hypothesized that Cyp1a1(-/-) mice would be more susceptible to hyperoxic lung injury than wild-type (WT) mice, and that the protective role of CYP1A1 is in part due to CYP1A1-mediated decrease in the levels of reactive oxygen species-mediated lipid hydroperoxides, e.g., F2-isoprostanes/isofurans, leading to attenuation of oxidative damage. Eight- to ten-week-old male WT (C57BL/6J) or Cyp1a1(-/-) mice were exposed to hyperoxia (>95% O2) or room air for 24-72 h. The Cyp1a1(-/-) mice were more susceptible to oxygen-mediated lung damage and inflammation than WT mice, as evidenced by increased lung weight/body weight ratio, lung injury, neutrophil infiltration, and augmented expression of IL-6. Hyperoxia for 24-48 h induced CYP1A expression at the mRNA, protein, and enzyme levels in liver and lung of WT mice. Pulmonary F2-isoprostane and isofuran levels were elevated in WT mice after hyperoxia for 24 h. On the other hand, Cyp1a1(-/-) mice showed higher levels after 48-72 h of hyperoxia exposure compared to WT mice. Our results support the hypothesis that CYP1A1 protects against hyperoxic lung injury by decreasing oxidative stress. Future research could lead to the development of novel strategies for prevention and/or treatment of acute lung injury.


American Journal of Physiology-lung Cellular and Molecular Physiology | 2016

Sex-specific differences in neonatal hyperoxic lung injury.

Krithika Lingappan; Weiwu Jiang; Lihua Wang; Bhagavatula Moorthy

Male sex is considered an independent predictor for the development of bronchopulmonary dysplasia (BPD) after adjusting for other confounders. BPD is characterized by an arrest in lung development with marked impairment of alveolar septation and vascular development. The reasons underlying sexually dimorphic outcomes in premature neonates are not known. In this investigation, we tested the hypothesis that male neonatal mice will be more susceptible to hyperoxic lung injury and will display larger arrest in lung alveolarization. Neonatal male and female mice (C57BL/6) were exposed to hyperoxia [95% FiO2, postnatal day (PND) 1-5] and euthanized on PND 7 and 21. Extent of alveolarization, pulmonary vascularization, inflammation, and modulation of the NF-κB pathway were determined and compared with room air controls. Macrophage and neutrophil infiltration was significantly increased in hyperoxia-exposed animals but was increased to a larger extent in males compared with females. Lung morphometry showed a higher mean linear intercept (MLI) and a lower radial alveolar count (RAC) and therefore greater arrest in lung development in male mice. This was accompanied by a significant decrease in the expression of markers of angiogenesis (PECAM1 and VEGFR2) in males after hyperoxia exposure compared with females. Interestingly, female mice showed increased activation of the NF-κB pathway in the lungs compared with males. These results support the hypothesis that sex plays a crucial role in hyperoxia-mediated lung injury in this model. Elucidation of the sex-specific molecular mechanisms may aid in the development of novel individualized therapies to prevent/treat BPD.

Collaboration


Dive into the Bhagavatula Moorthy's collaboration.

Top Co-Authors

Avatar

Weiwu Jiang

Baylor College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Lihua Wang

Baylor College of Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Binoy Shivanna

Baylor College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Chun Chu

Baylor College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Stephen E. Welty

Baylor College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Kurt Randerath

Baylor College of Medicine

View shared research outputs
Researchain Logo
Decentralizing Knowledge