Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Krithika Lingappan is active.

Publication


Featured researches published by Krithika Lingappan.


Toxicological Sciences | 2014

Mice deficient in the gene for cytochrome P450 (CYP)1A1 are more susceptible than wild-type to hyperoxic lung injury: evidence for protective role of CYP1A1 against oxidative stress.

Krithika Lingappan; Weiwu Jiang; Lihua Wang; Gangduo Wang; Xanthi I. Couroucli; Binoy Shivanna; Stephen E. Welty; Roberto Barrios; M. Firoze Khan; Daniel W. Nebert; L. Jackson Roberts; Bhagavatula Moorthy

Hyperoxia contributes to acute lung injury in diseases such as acute respiratory distress syndrome in adults and bronchopulmonary dysplasia in premature infants. Cytochrome P450 (CYP)1A1 has been shown to modulate hyperoxic lung injury. The mechanistic role(s) of CYP1A1 in hyperoxic lung injury in vivo is not known. In this investigation, we hypothesized that Cyp1a1(-/-) mice would be more susceptible to hyperoxic lung injury than wild-type (WT) mice, and that the protective role of CYP1A1 is in part due to CYP1A1-mediated decrease in the levels of reactive oxygen species-mediated lipid hydroperoxides, e.g., F2-isoprostanes/isofurans, leading to attenuation of oxidative damage. Eight- to ten-week-old male WT (C57BL/6J) or Cyp1a1(-/-) mice were exposed to hyperoxia (>95% O2) or room air for 24-72 h. The Cyp1a1(-/-) mice were more susceptible to oxygen-mediated lung damage and inflammation than WT mice, as evidenced by increased lung weight/body weight ratio, lung injury, neutrophil infiltration, and augmented expression of IL-6. Hyperoxia for 24-48 h induced CYP1A expression at the mRNA, protein, and enzyme levels in liver and lung of WT mice. Pulmonary F2-isoprostane and isofuran levels were elevated in WT mice after hyperoxia for 24 h. On the other hand, Cyp1a1(-/-) mice showed higher levels after 48-72 h of hyperoxia exposure compared to WT mice. Our results support the hypothesis that CYP1A1 protects against hyperoxic lung injury by decreasing oxidative stress. Future research could lead to the development of novel strategies for prevention and/or treatment of acute lung injury.


American Journal of Physiology-lung Cellular and Molecular Physiology | 2016

Sex-specific differences in neonatal hyperoxic lung injury.

Krithika Lingappan; Weiwu Jiang; Lihua Wang; Bhagavatula Moorthy

Male sex is considered an independent predictor for the development of bronchopulmonary dysplasia (BPD) after adjusting for other confounders. BPD is characterized by an arrest in lung development with marked impairment of alveolar septation and vascular development. The reasons underlying sexually dimorphic outcomes in premature neonates are not known. In this investigation, we tested the hypothesis that male neonatal mice will be more susceptible to hyperoxic lung injury and will display larger arrest in lung alveolarization. Neonatal male and female mice (C57BL/6) were exposed to hyperoxia [95% FiO2, postnatal day (PND) 1-5] and euthanized on PND 7 and 21. Extent of alveolarization, pulmonary vascularization, inflammation, and modulation of the NF-κB pathway were determined and compared with room air controls. Macrophage and neutrophil infiltration was significantly increased in hyperoxia-exposed animals but was increased to a larger extent in males compared with females. Lung morphometry showed a higher mean linear intercept (MLI) and a lower radial alveolar count (RAC) and therefore greater arrest in lung development in male mice. This was accompanied by a significant decrease in the expression of markers of angiogenesis (PECAM1 and VEGFR2) in males after hyperoxia exposure compared with females. Interestingly, female mice showed increased activation of the NF-κB pathway in the lungs compared with males. These results support the hypothesis that sex plays a crucial role in hyperoxia-mediated lung injury in this model. Elucidation of the sex-specific molecular mechanisms may aid in the development of novel individualized therapies to prevent/treat BPD.


Toxicology and Applied Pharmacology | 2013

Sex-specific differences in hyperoxic lung injury in mice: Implications for acute and chronic lung disease in humans

Krithika Lingappan; Weiwu Jiang; Lihua Wang; Xanthi I. Couroucli; Roberto Barrios; Bhagavatula Moorthy

Sex-specific differences in pulmonary morbidity in humans are well documented. Hyperoxia contributes to lung injury in experimental animals and humans. The mechanisms responsible for sex differences in the susceptibility towards hyperoxic lung injury remain largely unknown. In this investigation, we tested the hypothesis that mice will display sex-specific differences in hyperoxic lung injury. Eight week-old male and female mice (C57BL/6J) were exposed to 72 h of hyperoxia (FiO2>0.95). After exposure to hyperoxia, lung injury, levels of 8-iso-prostaglandin F2 alpha (8-iso-PGF 2α) (LC-MS/MS), apoptosis (TUNEL) and inflammatory markers (suspension bead array) were determined. Cytochrome P450 (CYP)1A expression in the lung was assessed using immunohistochemistry and western blotting. After exposure to hyperoxia, males showed greater lung injury, neutrophil infiltration and apoptosis, compared to air-breathing controls than females. Pulmonary 8-iso-PGF 2α levels were higher in males than females after hyperoxia exposure. Sexually dimorphic increases in levels of IL-6 (F>M) and VEGF (M>F) in the lungs were also observed. CYP1A1 expression in the lung was higher in female mice compared to males under hyperoxic conditions. Overall, our results support the hypothesis that male mice are more susceptible than females to hyperoxic lung injury and that differences in inflammatory and oxidative stress markers contribute to these sex-specific dimorphic effects. In conclusion, this paper describes the establishment of an animal model that shows sex differences in hyperoxic lung injury in a temporal manner and thus has important implications for lung diseases mediated by hyperoxia in humans.


Biochemical and Biophysical Research Communications | 2014

Differential concentration-specific effects of caffeine on cell viability, oxidative stress, and cell cycle in pulmonary oxygen toxicity in vitro

Kirti Kumar Tiwari; Chun Chu; Xanthi I. Couroucli; Bhagavatula Moorthy; Krithika Lingappan

Caffeine is used to prevent bronchopulmonary dysplasia (BPD) in premature neonates. Hyperoxia contributes to the development of BPD, inhibits cell proliferation and decreases cell survival. The mechanisms responsible for the protective effect of caffeine in pulmonary oxygen toxicity remain largely unknown. A549 and MLE 12 pulmonary epithelial cells were exposed to hyperoxia or maintained in room air, in the presence of different concentrations (0, 0.05, 0.1 and 1mM) of caffeine. Caffeine had a differential concentration-specific effect on cell cycle progression, oxidative stress and viability, with 1mM concentration being deleterious and 0.05 mM being protective. Reactive oxygen species (ROS) generation during hyperoxia was modulated by caffeine in a similar concentration-specific manner. Caffeine at 1mM, but not at the 0.05 mM concentration decreased the G2 arrest in these cells. Taken together this study shows the novel funding that caffeine has a concentration-specific effect on cell cycle regulation, ROS generation, and cell survival in hyperoxic conditions.


Free Radical Biology and Medicine | 2015

Disruption of cytochrome P4501A2 in mice leads to increased susceptibility to hyperoxic lung injury

Lihua Wang; Krithika Lingappan; Weiwu Jiang; Xanthi I. Couroucli; Stephen E. Welty; Binoy Shivanna; Roberto Barrios; Gangduo Wang; M. Firoze Khan; Frank J. Gonzalez; L. Jackson Roberts; Bhagavatula Moorthy

Hyperoxia contributes to acute lung injury in diseases such as acute respiratory distress syndrome. Cytochrome P450 (CYP) 1A enzymes have been implicated in hyperoxic lung injury, but the mechanistic role of CYP1A2 in pulmonary injury is not known. We hypothesized that mice lacking the gene Cyp1a2 (which is predominantly expressed in the liver) will be more sensitive to lung injury and inflammation mediated by hyperoxia and that CYP1A2 will play a protective role by attenuating lipid peroxidation and oxidative stress in the lung. Eight- to ten-week-old WT (C57BL/6) or Cyp1a2(-/-) mice were exposed to hyperoxia (>95% O2) or maintained in room air for 24-72 h. Lung injury was assessed by determining the ratio of lung weight/body weight (LW/BW) and by histology. Extent of inflammation was determined by measuring the number of neutrophils in the lung as well as cytokine expression. The Cyp1a2(-/-) mice under hyperoxic conditions showed increased LW/BW ratios, lung injury, neutrophil infiltration, and IL-6 and TNF-α levels and augmented lipid peroxidation, as evidenced by increased formation of malondialdehyde- and 4-hydroxynonenal-protein adducts and pulmonary isofurans compared to WT mice. In vitro experiments showed that the F2-isoprostane PGF2-α is metabolized by CYP1A2 to a dinor metabolite, providing evidence for a catalytic role for CYP1A2 in the metabolism of F2-isoprostanes. In summary, our results support the hypothesis that hepatic CYP1A2 plays a critical role in the attenuation of hyperoxic lung injury by decreasing lipid peroxidation and oxidative stress in vivo.


Toxicology Letters | 2014

Increased susceptibility to hyperoxic lung injury and alveolar simplification in newborn rats by prenatal administration of benzo[a]pyrene

Vijay S. Thakur; Yanhong W. Liang; Krithika Lingappan; Weiwu Jiang; Lihua Wang; Roberto Barrios; Guo-Dong Zhou; Bharath Guntupalli; Binoy Shivanna; Paramahamsa Maturu; Stephen E. Welty; Bhagavatula Moorthy; Xanthi I. Couroucli

Maternal smoking is one of the risk factors for preterm birth and for the development of bronchopulmonary dysplasia (BPD). In this study, we tested the hypothesis that prenatal exposure of rats to benzo[a]pyrene (BP), a component of cigarette smoke, will result in increased susceptibility of newborns to oxygen-mediated lung injury and alveolar simplification, and that cytochrome P450 (CYP)1A and 1B1 enzymes and oxidative stress mechanistically contribute to this phenomenon. Timed pregnant Fisher 344 rats were administered BP (25 mg/kg) or the vehicle corn oil (CO) on gestational days 18, 19 and 20, and newborn rats were either maintained in room air or exposed to hyperoxia (85% O2) for 7 or 14 days. Hyperoxic newborn rats prenatally exposed to the vehicle CO showed lung injury and alveolar simplification, and inflammation, and these effects were potentiated in rats that were prenatally exposed to BP. Prenatal exposure to BP, followed by hyperoxia, also resulted in significant modulation of hepatic and pulmonary cytochrome P450 (CYP)1A and 1B1 enzymes at PND 7-14. These rats displayed significant oxidative stress in lungs at postnatal day (PND) 14, as evidenced by increased levels of the F2-isoprostane 8-iso-PGF2α. Furthermore, these animals showed BP-derived DNA adducts and oxidative DNA adducts in the lung. In conclusion, our results show increased susceptibility of newborns to oxygen-mediated lung injury and alveolar simplification following maternal exposure to BP, and our results suggest that modulation of CYP1A/1B1 enzymes, increases in oxidative stress, and BP-DNA adducts contributed to this phenomenon.


PLOS ONE | 2014

Analysis of the transcriptome in hyperoxic lung injury and sex-specific alterations in gene expression

Krithika Lingappan; Chandra Srinivasan; Weiwu Jiang; Lihua Wang; Xanthi I. Couroucli; Bhagavatula Moorthy

Exposure to high concentration of oxygen (hyperoxia) leads to lung injury in experimental animal models and plays a role in the pathogenesis of diseases such as Acute Respiratory Distress Syndrome (ARDS) and Bronchopulmonary dysplasia (BPD) in humans. The mechanisms responsible for sex differences in the susceptibility towards hyperoxic lung injury remain largely unknown. The major goal of this study was to characterize the changes in the pulmonary transcriptome following hyperoxia exposure and further elucidate the sex-specific changes. Male and female (8–10 wk) wild type (WT) (C57BL/6J) mice were exposed to hyperoxia (FiO2>0.95) and gene expression in lung tissues was studied at 48 h. A combination of fold change ≥1.4 and false discovery rate (FDR)<5% was used to define differentially expressed genes (DEGs). Overrepresentation of gene ontology terms representing biological processes and signaling pathway impact analysis (SPIA) was performed. Comparison of DEG profiles identified 327 genes unique to females, 585 unique to males and 1882 common genes. The major new findings of this study are the identification of new candidate genes of interest and the sex-specific transcriptomic changes in hyperoxic lung injury. We also identified DEGs involved in signaling pathways like MAP kinase and NF-kappa B which may explain the differences in sex-specific susceptibility to hyperoxic lung injury. These findings highlight changes in the pulmonary transcriptome and sex-specific differences in hyperoxic lung injury, and suggest new pathways, whose components could serve as sex-specific biomarkers and possible therapeutic targets for acute lung injury (ALI)/acute respiratory distress (ARDS) in humans.


Toxicology | 2015

Sex-specific differences in hyperoxic lung injury in mice: role of cytochrome P450 (CYP)1A.

Krithika Lingappan; Weiwu Jiang; Lihua Wang; Xanthi I. Couroucli; Bhagavatula Moorthy

Sex-specific differences in pulmonary morbidity in adults and preterm infants are well documented. Hyperoxia contributes to lung injury in experimental animals and humans. Cytochrome P450 (CYP) 1A enzymes have been shown to play a mechanistic role in hyperoxic lung injury (HLI) in animal models. Whether CYP1A enzymes contribute to gender-specific differences in relation to HLI is unknown. In this investigation, we tested the hypothesis that mice will display gender-specific differences in HLI, and that this phenomenon will be altered in mice lacking the genes for Cyp1a1 or 1a2. Eight week-old male and female wild type (WT) (C57BL/6J) mice, Cyp1a1-/-, and Cyp1a2-/- mice were exposed to 72h of hyperoxia (FiO2>0.95). Lung injury and inflammation were assessed and pulmonary and hepatic CYP1A1 and CYP1A2 levels were quantified at the enzyme activity, protein and mRNA level. Upon exposure to hyperoxia, liver and lung microsomal proteins showed higher pulmonary CYP1A1 (apoprotein level and activity) in WT females compared to WT males and a greater induction in hepatic CYP1A2 mRNA levels and activity in WT females after hyperoxia exposure. The gender based female advantage was lost or reversed in Cyp1a1-/- and Cyp1a2-/- mice. These findings suggest an important role for CYP1A enzymes in the gender-specific modulation of hyperoxic lung injury.


Expert Review of Anti-infective Therapy | 2013

Lactoferrin and the newborn: current perspectives

Krithika Lingappan; Athis Rajh Arunachalam; Mohan Pammi

Neonatal sepsis and necrotizing enterocolitis (NEC) are associated with significant mortality and morbidity. Inflammation secondary to sepsis and NEC increases morbidity, especially those related to the lung, brain and eye. Therapeutic strategies that target inflammation and decrease the emergence of antibiotic resistance are urgently needed. Lactoferrin (Lf) is a multifunctional protein that modulates inflammation, cell growth and differentiation and has broad antimicrobial activity. Studies evaluating the efficacy and safety of Lf in the prevention of neonatal sepsis and NEC are currently in progress, and one completed study shows significant promise. In this article, the functions of this multifunctional molecule and current clinical evidence for its use in the newborn are reviewed. Lf prophylaxis and therapy may have a significant impact in improving clinical outcomes of vulnerable preterm neonates.


Toxicology in Vitro | 2015

Role of GDF15 (growth and differentiation factor 15) in pulmonary oxygen toxicity

Kirti Kumar Tiwari; Bhagavatula Moorthy; Krithika Lingappan

GDF15 (growth and differentiation factor 15) is a secreted cytokine, a direct target of p53 and plays a role in cell proliferation and apoptosis. It is induced by oxidative stress and has anti-apoptotic effects. The role of GDF15 in hyperoxic lung injury is unknown. We tested the hypothesis that GDF15 will be induced in vitro, in a model of pulmonary oxygen toxicity, and will play a critical role in decreasing cell death and oxidative stress. BEAS-2B (human bronchial epithelial cells) and human pulmonary vascular endothelial cells (HPMEC) were exposed to hyperoxia, and expression of GDF15 and effect of GDF15 disruption on cell viability and oxidative stress was determined. Furthermore, we studied the effect of p53 knockdown on GDF15 expression. In vitro, both BEAS-2B and HPMEC cells showed a significant increase in GDF15 expression upon exposure to hyperoxia. After GDF15 knockdown, there was a significant decrease in cell viability and increase in oxidative stress compared to control cells transfected with siRNA with a scrambled sequence. Knockdown of p53 significantly decreased the induction of GDF15 by hyperoxia. In conclusion, we show that GDF15 has a pro-survival and anti-oxidant role in hyperoxia and that p53 plays a key role in its induction.

Collaboration


Dive into the Krithika Lingappan's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lihua Wang

Baylor College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Weiwu Jiang

Baylor College of Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Roberto Barrios

Houston Methodist Hospital

View shared research outputs
Top Co-Authors

Avatar

Yuhao Zhang

Baylor College of Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alex Veith

Baylor College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Binoy Shivanna

Baylor College of Medicine

View shared research outputs
Researchain Logo
Decentralizing Knowledge