Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Weiwu Jiang is active.

Publication


Featured researches published by Weiwu Jiang.


International Journal of Cancer | 2003

Polycyclic aromatic hydrocarbon-inducible DNA adducts: Evidence by 32P-postlabeling and use of knockout mice for Ah receptor-independent mechanisms of metabolic activation in vivo

Sudha R. Kondraganti; Pedro M. Fernández-Salguero; Frank J. Gonzalez; Kenneth S. Ramos; Weiwu Jiang; Bhagavatula Moorthy

There is significant human exposure to polycyclic aromatic hydrocarbons (PAHs), many of which are potent carcinogens in laboratory animals and are suspected human carcinogens. The PAHs are bioactivated by cytochrome P450 (CYP)1A1/1B1 enzymes to reactive intermediates that bind to DNA, a critical step in the initiation of carcinogenesis. The Ah receptor (AHR) plays a critical role in the induction of CYP1 enzymes (i.e., CYP1A1, 1A2 and 1B1) by PAHs such as benzo[a]pyrene (BP) and 3‐methylcholanthrene (MC). In our investigation, we tested the hypothesis that AHR‐null animals are less susceptible to PAH‐induced DNA adduct formation than wild‐type animals. Wild‐type [AHR (+/+)] mice or mice lacking the gene for the AHR were treated with a single dose (100 μmol/kg) of BP or MC, and hepatic DNA adducts were analyzed by 32P‐postlabeling. BP induced multiple hepatic DNA adducts in wild‐type as well as AHR‐null animals, suggesting the existence of AHR‐independent mechanisms for BP metabolic activation. On the other hand, DNA adduct formation was markedly suppressed in AHR‐null animals exposed to MC, although the major MC‐DNA adduct was produced in these animals. Hepatic activities and apoprotein contents of 7‐ethoxyresorufin O‐deethylase (EROD) (CYP1A1) and 7‐methoxyresorufin O‐demethylase (MROD) (CYP1A2) activities were markedly induced by BP and MC in the wild‐type, but not, in AHR‐null animals. CYP1B1 expression was also induced, albeit to a lesser extent by the PAH MC, but not BP, in the wild‐type animals. In conclusion, these results demonstrate the existence of AHR‐ and CYP1A1‐independent mechanisms of PAH metabolic activation in mouse liver, a phenomenon that may have important implications for PAH‐mediated carcinogenesis.


Toxicology and Applied Pharmacology | 2011

Prenatal administration of the cytochrome P4501A inducer, Β-naphthoflavone (BNF), attenuates hyperoxic lung injury in newborn mice: implications for bronchopulmonary dysplasia (BPD) in premature infants.

Xanthi I. Couroucli; Yan hong Wei Liang; Weiwu Jiang; Lihua Wang; Roberto Barrios; Peiying Yang; Bhagavatula Moorthy

Supplemental oxygen contributes to the development of bronchopulmonary dysplasia (BPD) in premature infants. In this investigation, we tested the hypothesis that prenatal treatment of pregnant mice (C57BL/6J) with the cytochrome P450 (CYP)1A1 inducer, ß-napthoflavone (BNF), will lead to attenuation of lung injury in newborns (delivered from these dams) exposed to hyperoxia by mechanisms entailing transplacental induction of hepatic and pulmonary CYP1A enzymes. Pregnant mice were administered the vehicle corn oil (CO) or BNF (40 mg/kg), i.p., once daily for 3 days on gestational days (17-19), and newborns delivered from the mothers were either maintained in room air or exposed to hyperoxia (>95% O(2)) for 1-5 days. After 3-5 days of hyperoxia, the lungs of CO-treated mice showed neutrophil infiltration, pulmonary edema, and perivascular inflammation. On the other hand, BNF-pretreated neonatal mice showed decreased susceptibility to hyperoxic lung injury. These mice displayed marked induction of ethoxyresorufin O-deethylase (EROD) (CYP1A1) and methoxyresorufin O-demethylase (MROD) (CYP1A2) activities, and levels of the corresponding apoproteins and mRNA levels until PND 3 in liver, while CYP1A1 expression alone was augmented in the lung. Prenatal BNF did not significantly alter gene expression of pulmonary NAD(P)H quinone reductase (NQO1). Hyperoxia for 24-72 h resulted in increased pulmonary levels of the F(2)-isoprostane 8-iso-PGF(2α), whose levels were decreased in mice prenatally exposed to BNF. In conclusion, our results suggest that prenatal BNF protects newborns against hyperoxic lung injury, presumably by detoxification of lipid hydroperoxides by CYP1A enzymes, a phenomenon that has implications for prevention of BPD in infants.


Cardiovascular Research | 2002

The atherogen 3-methylcholanthrene induces multiple DNA adducts in mouse aortic smooth muscle cells: role of cytochrome P4501B1

Bhagavatula Moorthy; Kimberly P. Miller; Weiwu Jiang; Kenneth S. Ramos

OBJECTIVE 3-Methylcholanthrene (MC), a polycylic aromatic hydrocarbon, induces atherogenesis in mice fed an atherogenic diet. In this study, we tested the hypothesis that MC would induce DNA adducts in mouse aortic smooth muscle cells (SMCs) and that cytochrome P4501B1 (CYP1B1) plays an important role in the activation of MC to genotoxic intermediates. METHODS Cultured SMCs were treated with MC or the vehicle dimethyl sulfoxide (DMSO), and DNA was isolated after 24 h. In some experiments, the cells were pre-treated with the CYP1B1 inhibitor 1-ethynylpyrene (EP) prior to exposure to MC. DNA adducts were determined by the 32P-postlabeling assay. Aryl hydrocarbon hydroxylase assay was measured by fluorimetry. RESULTS MC induced formation of 12 DNA adducts that were not observed in DMSO-treated cells. DNA adduct formation was dose-dependent, with maximum response observed at 3 microM. Pre-treatment of cells with EP dramatically suppressed DNA adduct formation by MC. MC treatment caused induction of CYP1B1, but not CYP1A1. CONCLUSION The induction of high levels of multiple DNA adducts in SMCs by MC suggests that SMCs have a functional enzymatic machinery capable of metabolically activating MC to genotoxic metabolites. The significant inhibition by EP of MC-induced DNA adduct formation indicated that CYP1B1 was the primary CYP enzyme responsible for formation of genotoxic metabolites that may play a role in the induction of atherosclerosis by MC.


Toxicology and Applied Pharmacology | 2008

Regulation of cytochrome P4501A1 expression by hyperoxia in human lung cell lines : Implications for hyperoxic lung injury

Kushal Y. Bhakta; Weiwu Jiang; Xanthi I. Couroucli; Inayat S. Fazili; Kathirvel Muthiah; Bhagavatula Moorthy

Supplemental oxygen, used to treat pulmonary insufficiency in newborns, contributes to the development of bronchopulmonary dysplasia (BPD). Cytochrome P4501A enzymes are induced by hyperoxia in animal models, but their role in human systems is unknown. Here we investigated the molecular mechanisms of induction of CYP1A1 by hyperoxia in human lung cell lines. Three human lung cell lines were exposed to hyperoxia (95% O2) for 0-72 h, and CYP1A1 activities, apoprotein contents, and mRNA levels were determined. Hyperoxia significantly induced CYP1A1 activity and protein contents (2-4 fold), and mRNA levels (30-40 fold) over control in each cell line. Transfection of a CYP1A1 promoter/luciferase reporter construct, followed by hyperoxia (4-72 h), showed marked (2-6 fold) induction of luciferase expression. EMSA and siRNA experiments strongly suggest that the Ah receptor (AHR) is involved in the hyperoxic induction of CYP1A1. MTT reduction assays showed attenuation of cell injury with the CYP1A1 inducer beta-naphthoflavone (BNF). Our results strongly suggest that hyperoxia transcriptionally activates CYP1A1 expression in human lung cell lines by AHR-dependent mechanisms, and that CYP1A1 induction is associated with decreased toxicity. This novel finding of induction of CYP1A1 in the absence of exogenous AHR ligands could lead to novel interventions in the treatment of BPD.


Toxicological Sciences | 2014

Mice deficient in the gene for cytochrome P450 (CYP)1A1 are more susceptible than wild-type to hyperoxic lung injury: evidence for protective role of CYP1A1 against oxidative stress.

Krithika Lingappan; Weiwu Jiang; Lihua Wang; Gangduo Wang; Xanthi I. Couroucli; Binoy Shivanna; Stephen E. Welty; Roberto Barrios; M. Firoze Khan; Daniel W. Nebert; L. Jackson Roberts; Bhagavatula Moorthy

Hyperoxia contributes to acute lung injury in diseases such as acute respiratory distress syndrome in adults and bronchopulmonary dysplasia in premature infants. Cytochrome P450 (CYP)1A1 has been shown to modulate hyperoxic lung injury. The mechanistic role(s) of CYP1A1 in hyperoxic lung injury in vivo is not known. In this investigation, we hypothesized that Cyp1a1(-/-) mice would be more susceptible to hyperoxic lung injury than wild-type (WT) mice, and that the protective role of CYP1A1 is in part due to CYP1A1-mediated decrease in the levels of reactive oxygen species-mediated lipid hydroperoxides, e.g., F2-isoprostanes/isofurans, leading to attenuation of oxidative damage. Eight- to ten-week-old male WT (C57BL/6J) or Cyp1a1(-/-) mice were exposed to hyperoxia (>95% O2) or room air for 24-72 h. The Cyp1a1(-/-) mice were more susceptible to oxygen-mediated lung damage and inflammation than WT mice, as evidenced by increased lung weight/body weight ratio, lung injury, neutrophil infiltration, and augmented expression of IL-6. Hyperoxia for 24-48 h induced CYP1A expression at the mRNA, protein, and enzyme levels in liver and lung of WT mice. Pulmonary F2-isoprostane and isofuran levels were elevated in WT mice after hyperoxia for 24 h. On the other hand, Cyp1a1(-/-) mice showed higher levels after 48-72 h of hyperoxia exposure compared to WT mice. Our results support the hypothesis that CYP1A1 protects against hyperoxic lung injury by decreasing oxidative stress. Future research could lead to the development of novel strategies for prevention and/or treatment of acute lung injury.


American Journal of Physiology-lung Cellular and Molecular Physiology | 2016

Sex-specific differences in neonatal hyperoxic lung injury.

Krithika Lingappan; Weiwu Jiang; Lihua Wang; Bhagavatula Moorthy

Male sex is considered an independent predictor for the development of bronchopulmonary dysplasia (BPD) after adjusting for other confounders. BPD is characterized by an arrest in lung development with marked impairment of alveolar septation and vascular development. The reasons underlying sexually dimorphic outcomes in premature neonates are not known. In this investigation, we tested the hypothesis that male neonatal mice will be more susceptible to hyperoxic lung injury and will display larger arrest in lung alveolarization. Neonatal male and female mice (C57BL/6) were exposed to hyperoxia [95% FiO2, postnatal day (PND) 1-5] and euthanized on PND 7 and 21. Extent of alveolarization, pulmonary vascularization, inflammation, and modulation of the NF-κB pathway were determined and compared with room air controls. Macrophage and neutrophil infiltration was significantly increased in hyperoxia-exposed animals but was increased to a larger extent in males compared with females. Lung morphometry showed a higher mean linear intercept (MLI) and a lower radial alveolar count (RAC) and therefore greater arrest in lung development in male mice. This was accompanied by a significant decrease in the expression of markers of angiogenesis (PECAM1 and VEGFR2) in males after hyperoxia exposure compared with females. Interestingly, female mice showed increased activation of the NF-κB pathway in the lungs compared with males. These results support the hypothesis that sex plays a crucial role in hyperoxia-mediated lung injury in this model. Elucidation of the sex-specific molecular mechanisms may aid in the development of novel individualized therapies to prevent/treat BPD.


Toxicology and Applied Pharmacology | 2013

Sex-specific differences in hyperoxic lung injury in mice: Implications for acute and chronic lung disease in humans

Krithika Lingappan; Weiwu Jiang; Lihua Wang; Xanthi I. Couroucli; Roberto Barrios; Bhagavatula Moorthy

Sex-specific differences in pulmonary morbidity in humans are well documented. Hyperoxia contributes to lung injury in experimental animals and humans. The mechanisms responsible for sex differences in the susceptibility towards hyperoxic lung injury remain largely unknown. In this investigation, we tested the hypothesis that mice will display sex-specific differences in hyperoxic lung injury. Eight week-old male and female mice (C57BL/6J) were exposed to 72 h of hyperoxia (FiO2>0.95). After exposure to hyperoxia, lung injury, levels of 8-iso-prostaglandin F2 alpha (8-iso-PGF 2α) (LC-MS/MS), apoptosis (TUNEL) and inflammatory markers (suspension bead array) were determined. Cytochrome P450 (CYP)1A expression in the lung was assessed using immunohistochemistry and western blotting. After exposure to hyperoxia, males showed greater lung injury, neutrophil infiltration and apoptosis, compared to air-breathing controls than females. Pulmonary 8-iso-PGF 2α levels were higher in males than females after hyperoxia exposure. Sexually dimorphic increases in levels of IL-6 (F>M) and VEGF (M>F) in the lungs were also observed. CYP1A1 expression in the lung was higher in female mice compared to males under hyperoxic conditions. Overall, our results support the hypothesis that male mice are more susceptible than females to hyperoxic lung injury and that differences in inflammatory and oxidative stress markers contribute to these sex-specific dimorphic effects. In conclusion, this paper describes the establishment of an animal model that shows sex differences in hyperoxic lung injury in a temporal manner and thus has important implications for lung diseases mediated by hyperoxia in humans.


Journal of Pharmacology and Experimental Therapeutics | 2011

Omeprazole attenuates hyperoxic lung injury in mice via aryl hydrocarbon receptor activation and is associated with increased expression of cytochrome P4501A enzymes.

Binoy Shivanna; Weiwu Jiang; Lihua Wang; Xanthi I. Couroucli; Bhagavatula Moorthy

Hyperoxia contributes to lung injury in experimental animals and bronchopulmonary dysplasia (BPD) in preterm infants. Cytochrome P4501A (CYP1A) enzymes, which are regulated by the aryl hydrocarbon receptor (AhR), have been shown to attenuate hyperoxic lung injury in rodents. Omeprazole, a proton pump inhibitor, used in humans to treat gastric acid-related disorders, induces hepatic CYP1A in vitro. However, the mechanism by which omeprazole induces CYP1A and its impact on CYP1A expression in vivo and hyperoxic lung injury are unknown. Therefore, we tested the hypothesis that omeprazole attenuates hyperoxic lung injury in adult wild-type (WT) C57BL/6J mice by an AhR-mediated induction of pulmonary and hepatic CYP1A enzymes. Accordingly, we determined the effects of omeprazole on pulmonary and hepatic CYP1A expression and hyperoxic lung injury in adult WT and AhR dysfunctional (AhRd) mice. We found that omeprazole attenuated lung injury in WT mice. Attenuation of lung injury by omeprazole paralleled enhanced pulmonary CYP1A1 and hepatic CYP1A2 expression in the omeprazole-treated mice. On the other hand, omeprazole failed to enhance pulmonary CYP1A1 and hepatic CYP1A2 expression and protect against hyperoxic lung injury in AhRd mice. In conclusion, our results suggest that omeprazole attenuates hyperoxic lung injury in mice by AhR-mediated mechanisms, and this phenomenon is associated with induction of CYP1A enzymes. These studies have important implications for the prevention and/or treatment of hyperoxia-induced disorders such as BPD in infants and acute respiratory distress syndrome in older children and adults.


Toxicology and Applied Pharmacology | 2015

Aryl hydrocarbon Receptor is Necessary to Protect Fetal Human Pulmonary Microvascular Endothelial Cells against Hyperoxic Injury: Mechanistic Roles of Antioxidant Enzymes and RelB

Shaojie Zhang; Ananddeep Patel; Chun Chu; Weiwu Jiang; Lihua Wang; Stephen E. Welty; Bhagavatula Moorthy; Binoy Shivanna

Hyperoxia contributes to the development of bronchopulmonary dysplasia (BPD) in premature infants. Activation of the aryl hydrocarbon receptor (AhR) protects adult and newborn mice against hyperoxic lung injury by mediating increases in the expression of phase I (cytochrome P450 (CYP) 1A) and phase II (NADP(H) quinone oxidoreductase (NQO1)) antioxidant enzymes (AOE). AhR positively regulates the expression of RelB, a component of the nuclear factor-kappaB (NF-κB) protein that contributes to anti-inflammatory processes in adult animals. Whether AhR regulates the expression of AOE and RelB, and protects fetal primary human lung cells against hyperoxic injury is unknown. Therefore, we tested the hypothesis that AhR-deficient fetal human pulmonary microvascular endothelial cells (HPMEC) will have decreased RelB activation and AOE, which will in turn predispose them to increased oxidative stress, inflammation, and cell death compared to AhR-sufficient HPMEC upon exposure to hyperoxia. AhR-deficient HPMEC showed increased hyperoxia-induced reactive oxygen species (ROS) generation, cleavage of poly(ADP-ribose) polymerase (PARP), and cell death compared to AhR-sufficient HPMEC. Additionally, AhR-deficient cell culture supernatants displayed increased macrophage inflammatory protein 1α and 1β, indicating a heightened inflammatory state. Interestingly, loss of AhR was associated with a significantly attenuated CYP1A1, NQO1, superoxide dismutase 1(SOD1), and nuclear RelB protein expression. These findings support the hypothesis that decreased RelB activation and AOE in AhR-deficient cells is associated with increased hyperoxic injury compared to AhR-sufficient cells.


Free Radical Biology and Medicine | 2011

Omeprazole attenuates hyperoxic injury in H441 cells via the aryl hydrocarbon receptor.

Binoy Shivanna; Chun Chu; Stephen E. Welty; Weiwu Jiang; Lihua Wang; Xanthi I. Couroucli; Bhagavatula Moorthy

Hyperoxia contributes to the development of bronchopulmonary dysplasia in premature infants. Earlier we observed that aryl hydrocarbon receptor (AhR)-deficient mice are more susceptible to hyperoxic lung injury than AhR-sufficient mice, and this phenomenon was associated with a lack of expression of cytochrome P450 1A enzymes. Omeprazole, a proton pump inhibitor used in humans with gastric acid-related disorders, activates AhR in hepatocytes in vitro. However, the effects of omeprazole on AhR activation in the lungs and its impact on hyperoxia-induced reactive oxygen species (ROS) generation and inflammation are unknown. In this study, we tested the hypothesis that omeprazole attenuates hyperoxia-induced cytotoxicity, ROS generation, and expression of monocyte chemoattractant protein-1 (MCP-1) in human lung-derived H441 cells via AhR activation. Experimental groups included cells transfected with AhR small interfering RNA (siRNA). Hyperoxia resulted in significant increases in cytotoxicity, ROS generation, and MCP-1 production, which were significantly attenuated with the functional activation of AhR by omeprazole. The protective effects of omeprazole on cytotoxicity, ROS production, and MCP-1 production were lost in H441 cells whose AhR gene was silenced by AhR siRNA. These findings support the hypothesis that omeprazole protects against hyperoxic injury in vitro via AhR activation that is associated with decreased ROS generation and expression of MCP-1.

Collaboration


Dive into the Weiwu Jiang's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lihua Wang

Baylor College of Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Roberto Barrios

Houston Methodist Hospital

View shared research outputs
Top Co-Authors

Avatar

Binoy Shivanna

Baylor College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Kathirvel Muthiah

Baylor College of Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Stephen E. Welty

Baylor College of Medicine

View shared research outputs
Researchain Logo
Decentralizing Knowledge