Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Bi-Dar Wang is active.

Publication


Featured researches published by Bi-Dar Wang.


Clinical Cancer Research | 2010

Identification of Differentially Methylated Genes in Normal Prostate Tissues from African American and Caucasian Men

Bernard Kwabi-Addo; Songping Wang; Woonbok Chung; Jaroslav Jelinek; Steven R. Patierno; Bi-Dar Wang; Ramez Andrawis; Norman H. Lee; Victor Apprey; Jean-Pierre Issa; Michael Ittmann

Purpose: Aberrant DNA methylation changes are common somatic alterations in prostate carcinogenesis. We examined the methylation status of six genes in prostate tissue specimens from African American (AA) and Caucasian (Cau) males. Experimental Design: We used pyrosequencing to quantitatively measure the methylation status of GSTP1, AR, RARβ2, SPARC, TIMP3, and NKX2-5. Real-time PCR was used to determine gene expression, and gene reactivation was analyzed by 5-aza-2′-deoxycytidine and/or trichostatin A treatment. Results: Statistical analysis showed significantly higher methylation in the prostate cancer tissue samples in comparison with matched normal samples for GSTP1 (P = 0.0001 for AA; P = 0.0008 for Cau), RARβ2 (P < 0.001 for AA and Cau), SPARC (P < 0.0001 for AA and Cau), TIMP3 (P < 0.0001 for AA and Cau), and NKX2-5 (P < 0.0001 for AA; P = 0.003 for Cau). Overall, we observed significant differences (P < 0.05) in the methylation level for all genes, except GSTP1, in the AA samples in comparison with the Cau samples. Furthermore, regression analysis revealed significantly higher methylation for NKX2-5 (P = 0.008) and TIMP3 (P = 0.039) in normal prostate tissue samples from AA in comparison with Cau, and a statistically significant association of methylation with age for NKX2-5 (P = 0.03) after adjusting for race. Conclusion: Our findings show higher methylation of several genes in prostate tissue samples from AA in comparison with Cau and may potentially contribute to the racial differences that are observed in prostate cancer pathogenesis. Clin Cancer Res; 16(14); 3539–47. ©2010 AACR.


Molecular Cancer | 2010

Prostate apoptosis response protein 4 sensitizes human colon cancer cells to chemotherapeutic 5-FU through mediation of an NFκB and microRNA network

Bi-Dar Wang; Christina Leah B. Kline; Thomas L. Olson; Bryan Frank; Truong Luu; Arun K. Sharma; Gavin P. Robertson; Matthew T. Weirauch; Steven R. Patierno; Joshua M. Stuart; Rosalyn B. Irby; Norman H. Lee

BackgroundDiminished expression or activity of prostate apoptosis response protein 4 (Par-4) has been demonstrated in a number of cancers, although reports on Par-4 expression during colon cancer progression are lacking. An understanding of the molecular events in conjunction with the genetic networks affected by Par-4 is warranted.ResultsColon cancer specimens derived from patients have significantly diminished expression of Par-4 mRNA relative to paired normal colon. Hence, the functional consequences of reintroducing Par-4 into HT29 colon cancer cells were assessed. Overexpression augmented the interaction of Par-4 with NFκB in the cytosol but not nucleus, and facilitated apoptosis in the presence of 5-fluorouracil (5-FU). Analogous findings were obtained when AKT1 pro-survival signaling was inhibited. Transcriptome profiling identified ~700 genes differentially regulated by Par-4 overexpression in HT29 cells. Nearly all Par-4-regulated genes were shown by promoter analysis to contain cis-binding sequences for NFκB, and meta-analysis of patient expression data revealed that one-third of these genes exist as a recurrent co-regulated network in colon cancer specimens. Sets of genes involved in programmed cell death, cell cycle regulation and interestingly the microRNA pathway were found overrepresented in the network. Noteworthy, Par-4 overexpression decreased NFκB occupancy at the promoter of one particular network gene DROSHA, encoding a microRNA processing enzyme. The resulting down-regulation of DROSHA was associated with expression changes in a cohort of microRNAs. Many of these microRNAs are predicted to target mRNAs encoding proteins with apoptosis-related functions. Western and functional analyses were employed to validate several predictions. For instance, miR-34a up-regulation corresponded with a down-regulation of BCL2 protein. Treating Par-4-overexpressing HT29 cells with a miR-34a antagomir functionally reversed both BCL2 down-regulation and apoptosis by 5-FU. Conversely, bypassing Par-4 overexpression by direct knockdown of DROSHA expression in native HT29 cells increased miR-34a expression and 5-FU sensitivity.ConclusionOur findings suggest that the initiation of apoptotic sensitivity in colon cancer cells can be mediated by Par-4 binding to NFκB in the cytoplasm with consequential changes in the expression of microRNA pathway components.


Prostate Cancer | 2013

Androgen Receptor-Target Genes in African American Prostate Cancer Disparities

Bi-Dar Wang; Qi Yang; Kristin Ceniccola; Fernando J. Bianco; Ramez Andrawis; Thomas W. Jarrett; Harold A. Frazier; Steven R. Patierno; Norman H. Lee

The incidence and mortality rates of prostate cancer (PCa) are higher in African American (AA) compared to Caucasian American (CA) men. To elucidate the molecular mechanisms underlying PCa disparities, we employed an integrative approach combining gene expression profiling and pathway and promoter analyses to investigate differential transcriptomes and deregulated signaling pathways in AA versus CA cancers. A comparison of AA and CA PCa specimens identified 1,188 differentially expressed genes. Interestingly, these transcriptional differences were overrepresented in signaling pathways that converged on the androgen receptor (AR), suggesting that the AR may be a unifying oncogenic theme in AA PCa. Gene promoter analysis revealed that 382 out of 1,188 genes contained cis-acting AR-binding sequences. Chromatin immunoprecipitation confirmed STAT1, RHOA, ITGB5, MAPKAPK2, CSNK2A,1 and PIK3CB genes as novel AR targets in PCa disparities. Moreover, functional screens revealed that androgen-stimulated AR binding and upregulation of RHOA, ITGB5, and PIK3CB genes were associated with increased invasive activity of AA PCa cells, as siRNA-mediated knockdown of each gene caused a loss of androgen-stimulated invasion. In summation, our findings demonstrate that transcriptional changes have preferentially occurred in multiple signaling pathways converging (“transcriptional convergence”) on AR signaling, thereby contributing to AR-target gene activation and PCa aggressiveness in AAs.


Epigenetics | 2015

Genome-wide differentially methylated genes in prostate cancer tissues from African-American and Caucasian men

Joseph M. Devaney; Songping Wang; P. Furbert-Harris; V. Apprey; Michael Ittmann; Bi-Dar Wang; Jacqueline Olender; Norman H. Lee; Bernard Kwabi-Addo

Increasing evidence suggests that aberrant DNA methylation changes may contribute to prostate cancer (PCa) ethnic disparity. To comprehensively identify DNA methylation alterations in PCa disparity, we used the Illumina 450K methylation platform to interrogate the methylation status of 485,577 CpG sites focusing on gene-associated regions of the human genome. Genomic DNA from African-American (AA; 7 normal and 3 cancers) and Caucasian (Cau; 8 normal and 3 cancers) was used in the analysis. Hierarchical clustering analysis identified probe-sets unique to AA and Cau samples, as well as common to both. We selected 25 promoter-associated novel CpG sites most differentially methylated by race (fold change > 1.5-fold; adjusted P < 0.05) and compared the β-value of these sites provided by the Illumina, Inc. array with quantitative methylation obtained by pyrosequencing in 7 prostate cell lines. We found very good concordance of the methylation levels between β-value and pyrosequencing. Gene expression analysis using qRT-PCR in a subset of 8 genes after treatment with 5-aza-2′-deoxycytidine and/or trichostatin showed up-regulation of gene expression in PCa cells. Quantitative analysis of 4 genes, SNRPN, SHANK2, MST1R, and ABCG5, in matched normal and PCa tissues derived from AA and Cau PCa patients demonstrated differential promoter methylation and concomitant differences in mRNA expression in prostate tissues from AA vs. Cau. Regression analysis in normal and PCa tissues as a function of race showed significantly higher methylation prevalence for SNRPN (P = 0.012), MST1R (P = 0.038), and ABCG5 (P < 0.0002) for AA vs. Cau samples. We selected the ABCG5 and SNRPN genes and verified their biological functions by Western blot analysis and siRNA gene knockout effects on cell proliferation and invasion in 4 PCa cell lines (2 AA and 2 Cau patients-derived lines). Knockdown of either ABCG5 or SNRPN resulted in a significant decrease in both invasion and proliferation in Cau PCa cell lines but we did not observe these remarkable loss-of-function effects in AA PCa cell lines. Our study demonstrates how differential genome-wide DNA methylation levels influence gene expression and biological functions in AA and Cau PCa.


Scientific Reports | 2015

Voltage-gated Na + Channel Activity Increases Colon Cancer Transcriptional Activity and Invasion Via Persistent MAPK Signaling

Carrie D. House; Bi-Dar Wang; Kristin Ceniccola; Russell Williams; May Simaan; Jacqueline Olender; Vyomesh Patel; Daniel T. Baptista-Hon; Christina M. Annunziata; J. Silvio Gutkind; Tim G. Hales; Norman H. Lee

Functional expression of voltage-gated Na+ channels (VGSCs) has been demonstrated in multiple cancer cell types where channel activity induces invasive activity. The signaling mechanisms by which VGSCs promote oncogenesis remain poorly understood. We explored the signal transduction process critical to VGSC-mediated invasion on the basis of reports linking channel activity to gene expression changes in excitable cells. Coincidentally, many genes transcriptionally regulated by the SCN5A isoform in colon cancer have an over-representation of cis-acting sites for transcription factors phosphorylated by ERK1/2 MAPK. We hypothesized that VGSC activity promotes MAPK activation to induce transcriptional changes in invasion-related genes. Using pharmacological inhibitors/activators and siRNA-mediated gene knockdowns, we correlated channel activity with Rap1-dependent persistent MAPK activation in the SW620 human colon cancer cell line. We further demonstrated that VGSC activity induces downstream changes in invasion-related gene expression via a PKA/ERK/c-JUN/ELK-1/ETS-1 transcriptional pathway. This is the first study illustrating a molecular mechanism linking functional activity of VGSCs to transcriptional activation of invasion-related genes.


Addiction Biology | 2013

Neuroplasticity, axonal guidance and micro‐RNA genes are associated with morphine self‐administration behavior

Jenica D. Tapocik; Truong Luu; Cheryl L. Mayo; Bi-Dar Wang; Erin Doyle; Alec D. Lee; Norman H. Lee; Greg I. Elmer

Neuroadaptations in the ventral striatum (VS) and ventral midbrain (VMB) following chronic opioid administration are thought to contribute to the pathogenesis and persistence of opiate addiction. In order to identify candidate genes involved in these neuroadaptations, we utilized a behavior‐genetics strategy designed to associate contingent intravenous drug self‐administration with specific patterns of gene expression in inbred mice differentially predisposed to the rewarding effects of morphine. In a Yoked‐control paradigm, C57BL/6J mice showed clear morphine‐reinforced behavior, whereas DBA/2J mice did not. Moreover, the Yoked‐control paradigm revealed the powerful consequences of self‐administration versus passive administration at the level of gene expression. Morphine self‐administration in the C57BL/6J mice uniquely up‐ or down‐regulated 237 genes in the VS and 131 genes in the VMB. Interestingly, only a handful of the C57BL/6J self‐administration genes (<3%) exhibited a similar expression pattern in the DBA/2J mice. Hence, specific sets of genes could be confidently assigned to regional effects of morphine in a contingent‐ and genotype‐dependent manner. Bioinformatics analysis revealed that neuroplasticity, axonal guidance and micro‐RNAs (miRNAs) were among the key themes associated with drug self‐administration. Noteworthy were the primary miRNA genes H19 and micro‐RNA containing gene (Mirg), processed, respectively, to mature miRNAs miR‐675 and miR‐154, because they are prime candidates to mediate network‐like changes in responses to chronic drug administration. These miRNAs have postulated roles in dopaminergic neuron differentiation and mu‐opioid receptor regulation. The strategic approach designed to focus on reinforcement‐associated genes provides new insight into the role of neuroplasticity pathways and miRNAs in drug addiction.


Clinical Cancer Research | 2015

Identification and Functional Validation of Reciprocal microRNA-mRNA Pairings in African American Prostate Cancer Disparities

Bi-Dar Wang; Kristin Ceniccola; Qi Yang; Ramez Andrawis; Vyomesh Patel; Youngmi Ji; Johng S. Rhim; Jacqueline Olender; Anastas Popratiloff; Patricia S. Latham; Yinglei Lai; Steven R. Patierno; Norman H. Lee

Purpose: African Americans (AA) exhibit higher rates of prostate cancer incidence and mortality compared with European American (EA) men. In addition to socioeconomic influences, biologic factors are believed to play a critical role in prostate cancer disparities. We investigated whether population-specific and -enriched miRNA–mRNA interactions might contribute to prostate cancer disparities. Experimental Design: Integrative genomics was used, combining miRNA and mRNA profiling, miRNA target prediction, pathway analysis, and functional validation, to map miRNA–mRNA interactions associated with prostate cancer disparities. Results: We identified 22 AA-specific and 18 EA-specific miRNAs in prostate cancer versus patient-matched normal prostate, and 10 “AA-enriched/-depleted” miRNAs in AA prostate cancer versus EA prostate cancer comparisons. Many of these population-specific/-enriched miRNAs could be paired with target mRNAs that exhibited an inverse pattern of differential expression. Pathway analysis revealed EGFR (or ERBB) signaling as a critical pathway significantly regulated by AA-specific/-enriched mRNAs and miRNA–mRNA pairings. Novel miRNA–mRNA pairings were validated by qRT-PCR, Western blot, and/or IHC analyses in prostate cancer specimens. Loss/gain of function assays performed in population-specific prostate cancer cell lines confirmed miR-133a/MCL1, miR-513c/STAT1, miR-96/FOXO3A, miR-145/ITPR2, and miR-34a/PPP2R2A as critical miRNA–mRNA pairings driving oncogenesis. Manipulating the balance of these pairings resulted in decreased proliferation and invasion, and enhanced sensitization to docetaxel-induced cytotoxicity in AA prostate cancer cells. Conclusions: Our data suggest that AA-specific/-enriched miRNA–mRNA pairings may play a critical role in the activation of oncogenic pathways in AA prostate cancer. Our findings also suggest that miR-133a/MCL1, miR-513c/STAT1, and miR-96/FOXO3A may have clinical significance in the development of novel strategies for treating aggressive prostate cancer. Clin Cancer Res; 21(21); 4970–84. ©2015 AACR.


PLOS ONE | 2013

A mechanism linking Id2-TGFβ crosstalk to reversible adaptive plasticity in neuroblastoma

Lina Chakrabarti; Bi-Dar Wang; Norman H. Lee; Anthony D. Sandler

The ability of high-risk neuroblastoma to survive unfavorable growth conditions and multimodal therapy has produced an elusive childhood cancer with remarkably poor prognosis. A novel phenomenon enabling neuroblastoma to survive selection pressure is its capacity for reversible adaptive plasticity. This plasticity allows cells to transition between highly proliferative anchorage dependent (AD) and slow growing, anoikis-resistant anchorage independent (AI) phenotypes. Both phenotypes are present in established mouse and human tumors. The differential gene expression profile of the two cellular phenotypes in the mouse Neuro2a cell line delineated pathways of proliferation in AD cells or tyrosine kinase activation/ apoptosis inhibition in AI cells. A 20 fold overexpression of inhibitor of differentiation 2 (Id2) was identified in AD cells while up-regulation of genes involved in anoikis resistance like PI3K/Akt, Erk, Bcl2 and integrins was observed in AI cells. Similarly, differential expression of Id2 and other genes of interest were also observed in the AD and AI phenotypes of human neuroblastoma cell lines, SK-N-SH and IMR-32; as well as in primary human tumor specimens. Forced down-regulation of Id2 in AD cells or overexpression in AI cells induced the cells to gain characteristics of the other phenotype. Id2 binds both TGFβ and Smad2/3 and appears critical for maintaining the proliferative phenotype at least partially through negative regulation of the TGFβ/Smad pathway. Simultaneously targeting the differential molecular pathways governing reversible adaptive plasticity resulted in 50% cure of microscopic disease and delayed tumor growth in established mouse neuroblastoma tumors. We present a mechanism that accounts for reversible adaptive plasticity and a molecular basis for combined targeted therapies in neuroblastoma.


Frontiers in Molecular Neuroscience | 2016

MicroRNAs Are Involved in the Development of Morphine-Induced Analgesic Tolerance and Regulate Functionally Relevant Changes in Serpini1

Jenica D. Tapocik; Kristin Ceniccola; Cheryl L. Mayo; Melanie L. Schwandt; Matthew Solomon; Bi-Dar Wang; Truong Luu; Jacqueline Olender; Thomas Harrigan; Thomas M. Maynard; Greg I. Elmer; Norman H. Lee

Long-term opioid treatment results in reduced therapeutic efficacy and in turn leads to an increase in the dose required to produce equivalent pain relief and alleviate break-through or insurmountable pain. Altered gene expression is a likely means for inducing long-term neuroadaptations responsible for tolerance. Studies conducted by our laboratory (Tapocik et al., 2009) revealed a network of gene expression changes occurring in canonical pathways involved in neuroplasticity, and uncovered miRNA processing as a potential mechanism. In particular, the mRNA coding the protein responsible for processing miRNAs, Dicer1, was positively correlated with the development of analgesic tolerance. The purpose of the present study was to test the hypothesis that miRNAs play a significant role in the development of analgesic tolerance as measured by thermal nociception. Dicer1 knockdown, miRNA profiling, bioinformatics, and confirmation of high value targets were used to test the proposition. Regionally targeted Dicer1 knockdown (via shRNA) had the anticipated consequence of eliminating the development of tolerance in C57BL/6J (B6) mice, thus supporting the involvement of miRNAs in the development of tolerance. MiRNA expression profiling identified a core set of chronic morphine-regulated miRNAs (miRs 27a, 9, 483, 505, 146b, 202). Bioinformatics approaches were implemented to identify and prioritize their predicted target mRNAs. We focused our attention on miR27a and its predicted target serpin peptidase inhibitor clade I (Serpini1) mRNA, a transcript known to be intricately involved in dendritic spine density regulation in a manner consistent with chronic morphines consequences and previously found to be correlated with the development of analgesic tolerance. In vitro reporter assay confirmed the targeting of the Serpini1 3′-untranslated region by miR27a. Interestingly miR27a was found to positively regulate Serpini1 mRNA and protein levels in multiple neuronal cell lines. Lastly, Serpini1 knockout mice developed analgesic tolerance at a slower rate than wild-type mice thus confirming a role for the protein in analgesic tolerance. Overall, these results provide evidence to support a specific role for miR27a and Serpini1 in the behavioral response to chronic opioid administration (COA) and suggest that miRNA expression and mRNA targeting may underlie the neuroadaptations that mediate tolerance to the analgesic effects of morphine.


PLOS ONE | 2018

MicroRNA and mRNA expression associated with ectopic germinal centers in thymus of myasthenia gravis

Manjistha Sengupta; Bi-Dar Wang; Norman H. Lee; Alexander Marx; Linda L. Kusner; Henry J. Kaminski

Background A characteristic pathology of early onset myasthenia gravis is thymic hyperplasia with ectopic germinal centers (GC). However, the mechanisms that trigger and maintain thymic hyperplasia are poorly characterized. Dysregulation of small, non-coding microRNAs (miRNAs) and their target genes has been identified in the pathology of several autoimmune diseases. We assessed the miRNA and mRNA profiles of the MG thymus and have investigated their role in GC formation and maintenance. Methods MG thymus samples were assessed by histology and grouped based upon the appearance of GC; GC positive and GC negative. A systems biology approach was used to study the differences between the groups. Our study included miRNA and mRNA profiling, quantitative real-time PCR validation, miRNA target identification, pathway analysis, miRNA-mRNA reciprocal expression pairing and interaction. Results Thirty-eight mature miRNAs and forty-six annotated mRNA transcripts were differentially expressed between the two groups (>1.5 fold change, ANOVA p<0.05). The miRNAs were found to be involved in immune response pathways and identified in other autoimmune diseases. The cellular and molecular functions of the mRNAs showed involvement in cell death and cell survival, cellular proliferation, cytokine signaling and extra-cellular matrix reorganization. Eleven miRNA and mRNA pairs were reciprocally regulated. The Regulator of G protein Signalling 13 (RGS13), known to be involved in GC regulation, was identified in specimens with GC and was paired with downregulation of miR-452-5p and miR-139-5p. MiRNA target sites were validated by dual luciferase assay. Transfection of miRNA mimics led to down regulation of RGS13 expression in Raji cells. Conclusion Our study indicates a distinct miRNA and mRNA expression pattern in ectopic GC in MG thymus. These miRNAs and mRNAs are involved in regulatory pathways common to inflammation and immune response, cell cycle regulation and anti-apoptotic pathways suggesting their involvement in support of GC formation in the thymus. We demonstrate for the first time that miR-139-5p and miR-452-5p negatively regulate RGS13 expression.

Collaboration


Dive into the Bi-Dar Wang's collaboration.

Top Co-Authors

Avatar

Norman H. Lee

George Washington University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ramez Andrawis

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Jacqueline Olender

George Washington University

View shared research outputs
Top Co-Authors

Avatar

Thomas W. Jarrett

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Kristin Ceniccola

George Washington University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Harold Frazier

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Truong Luu

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Anthony D. Sandler

Children's National Medical Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge