Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Steven R. Patierno is active.

Publication


Featured researches published by Steven R. Patierno.


Breast Cancer Research and Treatment | 2000

Overexpression of the glucose-regulated stress gene GRP78 in malignant but not benign human breast lesions.

Patricia M. Fernandez; Sana O. Tabbara; Lisa K. Jacobs; Frank C. R. Manning; Theodore N. Tsangaris; Arnold M. Schwartz; Katherine A. Kennedy; Steven R. Patierno

The 78 kDa glucose-regulated stress protein GRP78 is induced by physiological stress conditions such as hypoxia, low pH, and glucose deprivation which often exist in the microenvironments of solid tumors. Activation of this stress pathway occurs in response to several pro-apoptotic stimuli. In vitro studies have demonstrated a correlation between induced expression of GRP78 and resistance to apoptotic death induced by topoisomerase II-directed drugs. We were interested in characterizing this protein in human breast lesions for potential implications in chemotherapeutic intervention. Surgical specimens of human breast lesions and paired normal tissues from the same patients were flash frozen for these studies. Total RNA and/or protein were extracted from these tissues and used in northern and/or western blot analyses, respectively, to quantify the relative expression of GRP78. Northern blot analysis indicated that 0/5 benign breast lesions, 3/5 estrogen receptor positive (ER+) breast tumors, and 6/9 estrogen receptor negative (ER−) breast tumors exhibited overexpression of GRP78 mRNA compared to paired normal tissues, with fold overexpressions ranging from 1.8 to 20. Western blot analyses correlated with these findings since 0/5 benign breast lesions, 4/6 ER+ breast tumors, and 3/3 ER− breast tumors overexpressed GRP78 protein with fold overexpressions ranging from 1.8 to 19. Immunohistochemical analysis of these tissues demonstrated that the expression of GRP78 was heterogeneous among the cells comprising different normal and malignant glands, but confirmed the overexpression of GRP78 in most of the more aggressive ER− tumors. These results suggest that some breast tumors exhibit adverse microenvironment conditions that induce the overexpression of specific stress genes that may play a role in resistance to apoptosis and decreased chemotherapeutic efficacy.


The FASEB Journal | 1995

Chromium(III) picolinate produces chromosome damage in Chinese hamster ovary cells.

Diane M. Stearns; John Pierce Wise; Steven R. Patierno; Karen E. Wetterhahn

Chromium(III) complexes currently being sold as dietary supplements were tested for their ability to cause chromosomal aberrations in Chinese hamster ovary cells. Complexes were tested in soluble and particulate forms. Chromium picolinate was found to produce chromosome damage 3‐fold to 18‐fold above control levels for soluble doses of 0.050, 0.10, 0.50, and 1.0 mH after 24 h treatment. Particulate chromium picolinate doses of 8.0 μg/cm2 (corresponding to a 0.10 mM solublized dose) and 40 μcm2 (0.50 mM) produced aberrations 4‐fold and 16‐fold above control levels, respectively. Toxicity was measured as a decrease in plating efficiency relative to controls. The above treatments produced e 86% survival for all doses except 1.0 mM chromium picolinate, which produced 69 ± 10% survival. Chromium nicotinate, nicotinic acid, and chromium(III) chloride hexahydrate did not produce chromosome damage at equivalent nontoxic doses. Damage was inferred to be caused by the picolinate ligand because picolinic acid in the absence of chromium was clastogenic. Data are evaluated in terms of their relevance to human exposure based on pharmacokinetic modeling of tissue accumulation and are discussed in terms of literature reporting toxic effects of picolinic acid.—Stearns, D. M., Wise, J. P., Sr., Patierno, S. R., Wetterhahn, K. E. Chromium(III) picolinate produces chromosome damage in Chinese hamster ovary cells. FASEB J. 9, 1643‐1648 (1995)


Journal of the National Cancer Institute | 2014

Impact of Patient Navigation on Timely Cancer Care: The Patient Navigation Research Program

Karen M. Freund; Tracy A. Battaglia; Elizabeth E Calhoun; Julie S. Darnell; Donald J. Dudley; Kevin Fiscella; Martha L. Hare; Nancy L. LaVerda; Ji-Hyun Lee; Paul H. Levine; David M. Murray; Steven R. Patierno; Peter C. Raich; Richard G. Roetzheim; Melissa A. Simon; Frederick R. Snyder; Victoria Warren-Mears; Elizabeth M. Whitley; Paul Winters; Gregory S. Young; Electra D. Paskett

BACKGROUND Patient navigation is a promising intervention to address cancer disparities but requires a multisite controlled trial to assess its effectiveness. METHODS The Patient Navigation Research Program compared patient navigation with usual care on time to diagnosis or treatment for participants with breast, cervical, colorectal, or prostate screening abnormalities and/or cancers between 2007 and 2010. Patient navigators developed individualized strategies to address barriers to care, with the focus on preventing delays in care. To assess timeliness of diagnostic resolution, we conducted a meta-analysis of center- and cancer-specific adjusted hazard ratios (aHRs) comparing patient navigation vs usual care. To assess initiation of cancer therapy, we calculated a single aHR, pooling data across all centers and cancer types. We conducted a metaregression to evaluate variability across centers. All statistical tests were two-sided. RESULTS The 10521 participants with abnormal screening tests and 2105 with a cancer or precancer diagnosis were predominantly from racial/ethnic minority groups (73%) and publically insured (40%) or uninsured (31%). There was no benefit during the first 90 days of care, but a benefit of navigation was seen from 91 to 365 days for both diagnostic resolution (aHR = 1.51; 95% confidence interval [CI] = 1.23 to 1.84; P < .001)) and treatment initiation (aHR = 1.43; 95% CI = 1.10 to 1.86; P < .007). Metaregression revealed that navigation had its greatest benefits within centers with the greatest delays in follow-up under usual care. CONCLUSIONS Patient navigation demonstrated a moderate benefit in improving timely cancer care. These results support adoption of patient navigation in settings that serve populations at risk of being lost to follow-up.


Mutation Research\/genetic Toxicology | 1992

Clastogenicity of lead chromate particles in hamster and human cells

John Pierce Wise; Jay C. Leonard; Steven R. Patierno

Several insoluble compounds of chromium, such as lead chromate, are respiratory carcinogens in experimental animals and suspected to be so in humans. Lead chromate induces neoplastic transformation in cultured cells but the mechanism of genotoxicity is unknown. We examined the effect of lead chromate on the integrity of chromosomes of Chinese hamster ovary (CHO) and human foreskin fibroblasts (HFF) after a 24-h exposure. At 0.4 microgram/cm2, 0.8 microgram/cm2, 2 microgram/cm2 and 8 microgram/cm2 lead chromate particles reduced survival of CHO cells to 86%, 62%, 2% and less than 1% respectively. These concentrations induced a dose-dependent 4-19-fold increase in the percent metaphases with damage. The HFF cells exhibited higher sensitivity in both cytotoxicity and clastogenicity. The spectrum of damage observed for both cell types was primarily achromatic lesions affecting one or both chromatids. To test for particle dissolution effects, CHO cells were treated for 24 h with either clarified medium that had been incubated for 24 h with lead chromate particles, or clarified medium that had been pre-conditioned by CHO cells treated with lead chromate particles for 24 h. No damage was detected in these cells, indicating that extracellular dissolution into ionic lead and chromate did not contribute to the genotoxicity. This is consistent with a previous study in which scanning electron micrographs illustrated internalization of the particles. These results suggest that clastogenesis may be a mechanism for lead chromate induced carcinogenesis.


Molecular Carcinogenesis | 2000

Chromium(VI) Induces p53‐Dependent Apoptosis in Diploid Human Lung and Mouse Dermal Fibroblasts

Diane L. Carlisle; Daryl E. Pritchard; Jatinder Singh; Steven R. Patierno

Some forms of hexavalent chromium [Cr(VI)] are known to cause damage to respiratory‐tract tissue and DNA and are thought to be human lung carcinogens. In general, Cr(VI) is mutagenic and carcinogenic at doses that also evoke some cell death, and we previously showed that the predominant mode of death is apoptosis. Because p53 has been shown to initiate apoptosis after genotoxic insults, the objective of these experiments was to determine whether p53 is activated in and necessary for apoptosis of normal diploid human lung fibroblasts (HLF cells) after chromium exposure. By using annexin(V) staining and fluorescent microscopy, we found that Cr(VI) caused up to 14% of HLF cells to undergo apoptosis within 24 h after exposure. In addition, by using western blotting, we found that p53 protein levels increased fourfold to sixfold after exposure to sodium chromate. Because the major function of p53 is as a transcription factor, it must be translocated from the cytoplasm to the nucleus after chromate exposure to be active. Immunofluorescence studies using an antibody against p53 showed that, after chromate exposure, p53 was located in the nucleus of the treated HLF cells. The necessity of p53 for chromium‐induced apoptosis was examined in two ways. One approach used dermal fibroblasts from p53 wild‐type, heterozygous, and null mice, and the other approach used HLF cells that were transiently transfected with the human papilloma virus E6 gene, which targets p53 for degradation and creates a functional p53‐null cell. These studies showed that chromium‐induced apoptosis was p53 dependent. Mol. Carcinog. 28:111–118, 2000.


Cancer Investigation | 1996

Apoptosis: Inhibitor or Instigator of Carcinogenesis?

Francis C. R. Manning; Steven R. Patierno

Carcinogenesis is considered to require an initiating event that results in an irreversible genetic change in a subpopulation of cells. Based on the available evidence, it seems likely that apoptosis may act to attenuate this process by causing the deletion of genetically damaged cells from the host organism. Nevertheless, the existence of an active pathway leading to apoptotic cell death may be a double-edged sword, simply because it can be overcome. Some cells may exhibit preexisting genetic or epigenetic insensitivity to induction of apoptosis. Surviving cells may contain sub- lethal levels of DNA damage and be induced to proliferate as an indirect result of the carcinogen-induced apoptotic cell death of surrounding tissue. This process would facilitate the acquisition mutations in the genome, possibly resulting in further insensitivity to apoptosis through activation of the bcl-2 oncogene or inactivation of the p53 tumor suppressor gene. In this context, the propensity of a cell to undergo apoptosis could be viewed as a selection pressure that a tumor cell must overcome. For neoplastic growth to occur, an imbalance between proliferation and apoptosis must be established such that cell growth predominates. Genetic mutations or epigenetic factors that diminish the propensity of a cell to undergo apoptosis may therefore confer on that cell a growth advantage.


Clinical Cancer Research | 2010

Identification of Differentially Methylated Genes in Normal Prostate Tissues from African American and Caucasian Men

Bernard Kwabi-Addo; Songping Wang; Woonbok Chung; Jaroslav Jelinek; Steven R. Patierno; Bi-Dar Wang; Ramez Andrawis; Norman H. Lee; Victor Apprey; Jean-Pierre Issa; Michael Ittmann

Purpose: Aberrant DNA methylation changes are common somatic alterations in prostate carcinogenesis. We examined the methylation status of six genes in prostate tissue specimens from African American (AA) and Caucasian (Cau) males. Experimental Design: We used pyrosequencing to quantitatively measure the methylation status of GSTP1, AR, RARβ2, SPARC, TIMP3, and NKX2-5. Real-time PCR was used to determine gene expression, and gene reactivation was analyzed by 5-aza-2′-deoxycytidine and/or trichostatin A treatment. Results: Statistical analysis showed significantly higher methylation in the prostate cancer tissue samples in comparison with matched normal samples for GSTP1 (P = 0.0001 for AA; P = 0.0008 for Cau), RARβ2 (P < 0.001 for AA and Cau), SPARC (P < 0.0001 for AA and Cau), TIMP3 (P < 0.0001 for AA and Cau), and NKX2-5 (P < 0.0001 for AA; P = 0.003 for Cau). Overall, we observed significant differences (P < 0.05) in the methylation level for all genes, except GSTP1, in the AA samples in comparison with the Cau samples. Furthermore, regression analysis revealed significantly higher methylation for NKX2-5 (P = 0.008) and TIMP3 (P = 0.039) in normal prostate tissue samples from AA in comparison with Cau, and a statistically significant association of methylation with age for NKX2-5 (P = 0.03) after adjusting for race. Conclusion: Our findings show higher methylation of several genes in prostate tissue samples from AA in comparison with Cau and may potentially contribute to the racial differences that are observed in prostate cancer pathogenesis. Clin Cancer Res; 16(14); 3539–47. ©2010 AACR.


Molecular and Cellular Biochemistry | 2001

Effects of glutathione on chromium-induced DNA crosslinking and DNA polymerase arrest

Travis J O’Brien; Jian Xu; Steven R. Patierno

Hexavalent chromium (Cr (VI)) is reduced intracellularly to Cr (V), Cr (IV) and Cr (HI) by ascorbate (Asc), cysteine and glutathione (GSH). These metabolites induce a spectrum of genomic DNA damage resulting in the inhibition of DNA replication. Our previous studies have shown that treatment of DNA with Cr (III) or Cr (VI) plus Asc results in the formation of DNA-CrDNA crosslinks (Cr-DDC) and guanine-specific arrests of both prokaryotic and mammalian DNA polymerases. GSH not only acts as a reductant of Cr (VI) but also becomes crosslinked to DNA by Cr, thus, the focus of the present study was to examine the role of GSH in Cr-induced DNA damage and polymerase arrests. Co-incubation of Cr (III) with plasmid DNA in the presence of GSH led to the crosslinking of GSH to DNA. GSH co-treatment with Cr (III) also led to a decrease in the degree of Cr-induced DNA interstrand crosslinks relative to Cr(III)alone, without affecting total Cr DNA binding. DNA polymerase arrests were observed following treatment of DNA with Cr (III) alone, but were markedly reduced when GSH was added to the reaction mixture. Pre-formed polymerase-arresting lesions (Cr-DDC) were not removed by subsequent addition of GSH. Treatment of DNA with Cr (VI), in the presence of GSH, resulted in crosslinking of GSH to DNA, but failed to produce detectable DNA interstrand crosslinks or polymerase arrests. The inhibitory effect of GSH on Cr-induced polymerase arrest was further confirmed in human genomic DNA using quantitative PCR (QPCR) analysis. Treatment of genomic DNA with Cr (III) resulted in a marked inhibition of the amplification of a 1.6 kb target fragment of the p53 gene byTagpolymerase. This was almost completely prevented by co-treatment with GSH and Cr (III). These results indicate that Cr-induced DNA interstrand crosslinks, and not DNA-Cr-GSH crosslinks, are the principal lesions responsible for blocking DNA replication. Moreover, the formation of DNA-Cr-GSH crosslinks may actually preclude the formation of the polymerase arresting lesions. (Mol Cell Biochem222:173-182, 2001)


Mutation Research\/genetic Toxicology | 1996

Interlaboratory validation of a new assay for DNA-protein crosslinks

Max Costa; Anatoly Zhitkovich; Michael L. Gargas; Dennis J. Paustenbach; Brent L. Finley; Jim R. Kuykendall; Ruth E. Billings; Timothy J. Carlson; Karen E. Wetterhahn; Jian Xu; Steven R. Patierno; Matthew S. Bogdanffy

In 1992, a simple and sensitive assay for detecting DNA-protein crosslinks was developed [1]. In an effort to facilitate the greater use of the assay, a number of studies were conducted to evaluate its reliability and reproducibility. During this work, the assay was used to assess whether various metals and other compounds could induce crosslinks in cultured human lymphocytes (Epstein-Barr virus-transformed Burkitts Lymphoma cell line). Potassium permanganate, mercury chloride, lead nitrate, magnesium perchlorate, aluminum chloride, and cadmium chloride did not induce DNA-protein crosslinks at either cytotoxic or non-cytotoxic levels. Copper sulfate, arsenic trioxide, and potassium chromate induced DNA-protein crosslinks only at cytotoxic concentrations. Acute lethality of the cells was assessed immediately after exposure to metals by trypan blue exclusion while long-term lethality was assessed by cell proliferation and trypan blue exclusion following an incubation period of 5 days after exposure to the metal compound. All metals exhibited more toxicity in the long-term lethality assay compared to the short-term assay. The cultured human lymphocytes treated with various doses of lead acetate, cadmium chloride, arsenic trioxide and copper sulfate, as well as cis-platinum and chromate, were sent to four different laboratories to compare the reliability and reproducibility of the DNA-protein crosslink assay. Depending on the chemical studied, there were quantitative differences in the results observed among the various laboratories using the assay. However, all laboratories generally showed that cis-platinum, chromate, arsenic trioxide and copper sulfate induced DNA-protein crosslinks at levels that produced acute cytotoxicity, whereas cadmium chloride and lead acetate did not.


Chemico-Biological Interactions | 1985

DNA-protein cross-links induced by nickel compounds in intact cultured mammalian cells

Steven R. Patierno; Max Costa

The carcinogenic activity of crystalline NiS has been attributed to phagocytosis and intracellular dissolution of the particles to yield Ni2+ which is thought to enter the nucleus and damage DNA. In this study the extent and type of DNA damage in Chinese hamster ovary CHO cells treated with various nickel compounds was assessed by alkaline elution. Both insoluble (crystalline NiS) and soluble (NiCl2) nickel compounds induced single strand breaks and DNA protein cross-links. The single strand breaks were repaired relatively quickly but the DNA-protein cross-links were present and still accumulating 24 h after exposure to nickel. Single strand breakage occurred at both non-cytotoxic and cytotoxic concentrations of nickel, however, DNA-protein cross-linking was absent when cells were exposed to toxic nickel levels. The concentration of nickel that induced DNA-protein cross-linking correlated with those metal concentrations that reversibly inhibited cellular replication.

Collaboration


Dive into the Steven R. Patierno's collaboration.

Top Co-Authors

Avatar

Susan Ceryak

George Washington University

View shared research outputs
Top Co-Authors

Avatar

Norman H. Lee

George Washington University

View shared research outputs
Top Co-Authors

Avatar

Bi-Dar Wang

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Ramez Andrawis

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Peter C. Raich

University of Colorado Denver

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Travis J. O'Brien

George Washington University

View shared research outputs
Top Co-Authors

Avatar

Daryl E. Pritchard

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Heather A. Young

George Washington University

View shared research outputs
Top Co-Authors

Avatar

Nancy L. LaVerda

Washington University in St. Louis

View shared research outputs
Researchain Logo
Decentralizing Knowledge