Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where César Augusto João Ribeiro is active.

Publication


Featured researches published by César Augusto João Ribeiro.


Neurochemistry International | 2002

Inhibition of the mitochondrial respiratory chain complex activities in rat cerebral cortex by methylmalonic acid

Ana Maria Brusque; R Borba Rosa; Patrícia Fernanda Schuck; Karina Borges Dalcin; César Augusto João Ribeiro; Cleide Goncalves da Silva; Clovis Milton Duval Wannmacher; Carlos Severo Dutra-Filho; Angela Terezinha de Souza Wyse; P Briones; Moacir Wajner

Propionic and methylmalonic acidemic patients have severe neurologic symptoms whose etiopathogeny is still obscure. Since increase of lactic acid is detected in the urine of these patients, especially during metabolic decompensation when high concentrations of methylmalonate (MMA) and propionate (PA) are produced, it is possible that cellular respiration may be impaired in these individuals. Therefore, we investigated the effects of MMA and PA (1, 2.5 and 5mM), the principal metabolites which accumulate in these conditions, on the mitochondrial respiratory chain complex activities succinate: 2,6-dichloroindophenol (DCIP) oxireductase (complex II); succinate: cytochrome c oxireductase (complexII+CoQ+III); NADH: cytochrome c oxireductase (complex I+CoQ+complex III); and cytochrome c oxidase (COX) (complex IV) from cerebral cortex homogenates of young rats. The effect of MMA on ubiquinol: cytochrome c oxireductase (complex III) and NADH: ubiquinone oxireductase (complex I) activities was also tested. Control groups did not contain MMA and PA in the incubation medium. MMA significantly inhibited complex I+III (32-46%), complex I (61-72%), and complex II+III (15-26%), without affecting significantly the activities of complexes II, III and IV. However, by using 1mM succinate in the assay instead of the usual 16mM concentration, MMA was able to significantly inhibit complex II activity in the brain homogenates. In contrast, PA did not affect any of these mitochondrial enzyme activities. The effect of MMA and PA on succinate: phenazine oxireductase (soluble succinate dehydrogenase (SDH)) was also measured in mitochondrial preparations. The results showed significant inhibition of the soluble SDH activity by MMA (11-27%) in purified mitochondrial fractions. Thus, if the in vitro inhibition of the oxidative phosphorylation system is also expressed under in vivo conditions, a deficit of brain energy production might explain some of the neurological abnormalities found in patients with methylmalonic acidemia (MMAemia) and be responsible for the lactic acidemia/aciduria identified in some of them.


Biochimica et Biophysica Acta | 2002

Inhibition of cytochrome c oxidase activity in rat cerebral cortex and human skeletal muscle by D-2-hydroxyglutaric acid in vitro

Cleide Goncalves da Silva; César Augusto João Ribeiro; Guilhian Leipnitz; Carlos Severo Dutra-Filho; Ângela Terezinha de Souza Wyse; Clovis Milton Duval Wannmacher; João José Freitas Sarkis; Cornelis Jakobs; Moacir Wajner

L-2-Hydroxyglutaric (LGA) and D-2-hydroxyglutaric (DGA) acids are the characteristic metabolites accumulating in the neurometabolic disorders known as L-2-hydroxyglutaric aciduria and D-2-hydroxyglutaric aciduria, respectively. Although these disorders are predominantly characterized by severe neurological symptoms, the neurotoxic mechanisms of brain damage are virtually unknown. In this study we have evaluated the role of LGA and DGA at concentrations ranging from 0.01 to 5.0 mM on various parameters of energy metabolism in cerebral cortex slices and homogenates of 30-day-old Wistar rats, namely glucose uptake, CO(2) production and the respiratory chain enzyme activities of complexes I to IV. DGA significantly decreased glucose utilization (2.5 and 5.0 mM) by brain homogenates and CO(2) production (5 mM) by brain homogenates and slices, whereas LGA had no effect on either measurement. Furthermore, DGA significantly inhibited cytochrome c oxidase activity (complex IV) (EC 1.9.3.1) in a dose-dependent manner (35-95%) at doses as low as 0.5 mM, without compromising the other respiratory chain enzyme activities. In contrast, LGA did not interfere with these activities. Our results suggest that the strong inhibition of cytochrome c oxidase activity by increased levels of DGA could be related to the neurodegeneration of patients affected by D-2-hydroxyglutaric aciduria.


Neurochemical Research | 2008

Inhibition of brain energy metabolism by the branched-chain amino acids accumulating in maple syrup urine disease.

César Augusto João Ribeiro; Ângela M. Sgaravatti; Rafael Borba Rosa; Patrícia Fernanda Schuck; Vanessa Grando; Anna Laura Schmidt; Gustavo da Costa Ferreira; Marcos Luiz Santos Perry; Carlos Severo Dutra-Filho; Moacir Wajner

In the present work we investigated the in vitro effect of the branched-chain amino acids (BCAA) accumulating in maple syrup urine disease (MSUD) on some parameters of energy metabolism in cerebral cortex of rats. 14CO2 production from [1-14C]acetate, [1-5-14C]citrate and [U-14C]glucose, as well as glucose uptake by the brain were evaluated by incubating cortical prisms from 30-day-old rats in the absence (controls) or presence of leucine (Leu), valine (Val) or isoleucine (Ile). All amino acids significantly reduced 14CO2 production by around 20–55%, in contrast to glucose utilization, which was significantly increased by up to 90%. Furthermore, Leu significantly inhibited the activity of the respiratory chain complex IV, whereas Val and Ile markedly inhibited complexes II–III, III and IV by up to 40%. We also observed that trolox (α-tocopherol) and creatine totally prevented the inhibitory effects provoked by the BCAA on the respiratory chain complex activities, suggesting that free radicals were involved in these effects. The results indicate that the major metabolites accumulating in MSUD disturb brain aerobic metabolism by compromising the citric acid cycle and the electron flow through the respiratory chain. We presume that these findings may be of relevance to the understanding of the pathophysiology of the neurological dysfunction of MSUD patients.


Neurochemical Research | 2002

Inhibition of Creatine Kinase Activity in Vitro by Ethylmalonic Acid in Cerebral Cortex of Young Rats

Patrícia Fernanda Schuck; Guilhian Leipnitz; César Augusto João Ribeiro; Karina Borges Dalcin; Denis Reis de Assis; Alethea Gatto Barschak; Vânia Pulrolnik; Clovis Milton Duval Wannmacher; Angela Terezinha de Souza Wyse; Moacir Wajner

Short-chain acyl-CoA dehydrogenase deficiency is an inherited metabolic disorder biochemically characterized by tissue accumulation of ethylmalonic (EMA) and methylsuccinic (MSA) acids and clinically by severe neurological symptoms. In the present study we investigated the in vitro effects of EMA and MSA on the activity of creatine kinase (CK) in homogenates from cerebral cortex, skeletal and cardiac muscle of rats. EMA significantly inhibited CK activity from cerebral cortex, but did not affect this activity in skeletal and cardiac muscle. Furthermore, MSA had no effect on this enzyme in all tested tissues. Glutathione (GSH), ascorbic acid and α-tocopherol, and the nitric oxide synthase inhibitor L-NAME, did not affect the enzyme activity per se, but GSH fully prevented the inhibitory effect of EMA when co-incubated with EMA. In contrast, α-tocopherol, ascorbic acid and L-NAME did not influence the inhibitory effect of the acid. The data suggest that inhibition of brain CK activity by EMA is possibly mediated by oxidation of essential groups of the enzyme, which are protected by the potent intracellular, endogenous, naturally occurring antioxidant GSH.


Journal of Neurochemistry | 2006

Evidence that quinolinic acid severely impairs energy metabolism through activation of NMDA receptors in striatum from developing rats

César Augusto João Ribeiro; Vanessa Grando; Carlos Severo Dutra Filho; Clovis Milton Duval Wannmacher; Moacir Wajner

In the present study we investigated the effect of intrastriatal administration of 150 nmol quinolinic acid to young rats on critical enzyme activities of energy production and transfer, as well as on 14CO2 production from [1–14C]acetate at distinct periods after quinolinic acid injection. We observed that quinolinic acid injection significantly inhibited complexes II (50%), III (46%) and II–III (35%), as well as creatine kinase (27%), but not the activities of complexes I and IV and citrate synthase in striatum prepared 12 h after treatment. In contrast, no alterations of these enzyme activities were observed 3 or 6 h after quinolinic acid administration. 14CO2 production from [1–14C]acetate was also significantly inhibited (27%) by quinolinic acid in rat striatum prepared 12 h after injection. However, no alterations of these activities were observed in striatum homogenates incubated in the presence of 100 μm quinolinic acid . Pretreatment with the NMDA receptor antagonist MK‐801 and with creatine totally prevented all inhibitory effects elicited by quinolinic acid administration. In addition, α‐tocopherol plus ascorbate and the nitric oxide synthase inhibitor l‐NAME completely abolished the inhibitions provoked by quinolinic acid on creatine kinase and complex III. Furthermore, pyruvate pretreatment totally blocked the inhibitory effects of quinolinic acid injection on complex II activity and partially prevented quinolinic acid‐induced creatine kinase inhibition. These observations strongly indicate that oxidative phosphorylation, the citric acid cycle and cellular energy transfer are compromised by high concentrations of quinolinic acid in the striatum of young rats and that these inhibitory effects were probably mediated by NMDA stimulation.


Neurochemistry International | 2004

Inhibition of creatine kinase activity from rat cerebral cortex by D-2-hydroxyglutaric acid in vitro.

Cleide Goncalves da Silva; Ana Rubia Figueiredo Bueno; Patrícia Fernanda Schuck; Guilhian Leipnitz; César Augusto João Ribeiro; Rafael Borba Rosa; Carlos Severo Dutra Filho; Angela Terezinha de Souza Wyse; Clovis Milton Duval Wannmacher; Moacir Wajner

D-2-Hydroxyglutaric acid (DGA) is the biochemical hallmark of patients affected by the neurometabolic disorder known as D-2-hydroxyglutaric aciduria (DHGA). Although this disease is predominantly characterized by severe neurological findings, the underlying mechanisms of brain injury are virtually unknown. In the present study, we investigated the effect of DGA on total, cytosolic, and mitochondrial creatine kinase (CK) activities from cerebral cortex of 30-day-old Wistar rats. Total CK activity (tCK) was measured in whole cell homogenates, whereas cytosolic and mitochondrial activities were measured in the cytosolic and mitochondrial preparations from cerebral cortex. We verified that CK activities were significantly inhibited by DGA (11-34% inhibition) at concentrations as low as 0.25 mM, being the mitochondrial fraction the most affected activity. Kinetic studies revealed that the inhibitory effect of DGA was non-competitive in relation to phosphocreatine. We also observed that this inhibition was fully prevented by pre-incubation of the homogenates with reduced glutathione, suggesting that the inhibitory effect of DGA on tCK activity is possibly mediated by oxidation of essential thiol groups of the enzyme. Considering the importance of CK activity for brain metabolism homeostasis, our results suggest that inhibition of this enzyme by increased levels of DGA may be related to the neurodegeneration of patients affected by DHGA.


Neurochemistry International | 2004

Evidence that 3-hydroxyglutaric acid interacts with NMDA receptors in synaptic plasma membranes from cerebral cortex of young rats.

Rafael Borba Rosa; Carolina V. Schwarzbold; Karina Borges Dalcin; Gabrielle C. Ghisleni; César Augusto João Ribeiro; Maria Beatriz Moretto; Marcos Emilio dos Santos Frizzo; Georg F. Hoffmann; Diogo O. Souza; Moacir Wajner

Neurological symptoms are common in patients with glutaric acidemia type I (GA-I). Although the pathophysiology of this disorder is not yet fully established, 3-hydroxyglutaric acid (3-HGA), which accumulates in affected patients, has recently been demonstrated to be excitotoxic to embryonic chick and neonatal rat neurons probably via NMDA glutamate receptors. In the present study, we investigated the in vitro effects of 3-HGA on the [(3)H]glutamate and [(3)H]MK-801 (dizocilpine) binding to rat synaptic plasma membranes from cerebral cortex of young rats in order to elucidate the interactions of 3-HGA with glutamate receptors and its possible contribution to the in vitro excitotoxic properties of 3-HGA. 3-HGA (10-100 microM) significantly decreased Na(+)-dependent (up to 62%) and Na(+)-independent (up to 30%) [(3)H]glutamate binding to synaptic membranes, reflecting a possible competition between glutamate and 3-HGA for the glutamate transporter and receptor sites, respectively. Since a decrease in Na(+)-independent glutamate binding might represent an interaction of 3-HGA with glutamate receptors, we next investigated whether 3-HGA interacts with NMDA receptors by adding NMDA alone or combined with 3-HGA and measuring Na(+)-independent [(3)H]glutamate binding to synaptic membranes (binding to receptors). We verified that 3-HGA and NMDA, at 10 and 100 microM concentrations, decreased glutamate binding by up to 20 and 45%, respectively, and that the simultaneous addition of both substances did not provoke an additive effect, implying that they bind to NMDA receptors at the same site. Furthermore, the binding of the NMDA-channel blocker [(3)H ]MK-801 was significantly increased (approximately 32-40%) by 10 and 100 microM 3-HGA, implying that 3-HGA was able to open the NMDA channel allowing MK-801 binding, which is a characteristic of NMDA agonists. On the other hand, glutamate had a much higher stimulatory effect on this binding (180% increase), reflecting its strong NMDA agonist property. Furthermore, the simultaneous addition of 3-HGA and glutamate provoked an additive stimulatory effect on [(3)H]MK-801 binding to the NMDA receptor. These data indicate that, relatively to glutamate, 3-HGA is a weak agonist of NMDA receptors. Finally, we demonstrated that 3-HGA provoked a significant increase of extracellular calcium uptake by cerebral cortex slices, strengthening therefore, the view that 3-HGA activates NMDA receptors. The present study therefore, demonstrates at the molecular level that 3-HGA modulates glutamatergic neurotransmission and may explain previous findings relating the neurotoxic actions of this organic acid with excitotoxicity.


Brain Research | 2004

Inhibition of energy metabolism in cerebral cortex of young rats by the medium-chain fatty acids accumulating in MCAD deficiency

Denis Reis de Assis; Rita de Cassia Maria; Rafael Borba Rosa; Patrícia Fernanda Schuck; César Augusto João Ribeiro; Gustavo da Costa Ferreira; Carlos Severo Dutra-Filho; Angela Terezinha de Souza Wyse; Clovis Milton Duval Wannmacher; Marcos Luiz Santos Perry; Moacir Wajner

Patients affected by medium-chain acyl CoA dehydrogenase (MCAD) deficiency, a frequent inborn error of metabolism, suffer from acute episodes of encephalopathy. However, the mechanisms underlying the neuropathology of this disease are poorly known. In the present study, we investigated the in vitro effect of the medium-chain fatty acids (MCFA), at concentrations varying from 0.01 to 3 mM, accumulating in MCAD deficiency on some parameters of energy metabolism in cerebral cortex of young rats. (14)CO(2) production from [U(14)] glucose, [1-(14)C] acetate and [1,5-(14)C] citrate was evaluated by incubating cerebral cortex homogenates from 30-day-old rats in the absence (controls) or presence of octanoic acid, decanoic acid or cis-4-decenoic acid. OA and DA significantly reduced (14)CO(2) production from acetate by around 30-40%, and from glucose by around 70%. DA significantly reduced (14)CO(2) production from citrate by around 40%, while OA did not affect this parameter. cDA inhibited (14)CO(2) production from all tested substrates by around 30-40%. The activities of the respiratory chain complexes and of creatine kinase were also tested in the presence of DA and cDA. Both metabolites significantly inhibited cytochrome c oxidase activity (by 30%) and complex II-III activity (DA, 25%; cDA, 80%). Furthermore, only cDA inhibited complex II activity (by 30%), while complex I-III and citrate synthase were not affected by these MCFA. On the other hand, only cDA reduced the activity of creatine kinase in total homogenates, as well as in mitochondrial and cytosolic fractions from cerebral cortex (by 50%). The data suggest that the major metabolites which accumulate in MCAD deficiency, with particular emphasis to cDA, compromise brain energy metabolism. We presume that these findings may contribute to the understanding of the pathophysiology of the neurological dysfunction of MCAD deficient patients.


Neurochemical Research | 2003

Ethylmalonic Acid Inhibits Mitochondrial Creatine Kinase Activity from Cerebral Cortex of Young Rats in Vitro

Guilhian Leipnitz; Patrícia Fernanda Schuck; César Augusto João Ribeiro; Karina Borges Dalcin; Denis Reis de Assis; Alethea Gatto Barschak; Vania Pulrolnik; Clovis Milton Duval Wannmacher; Angela Terezinha de Souza Wyse; Moacir Wajner

Short-chain acyl-CoA dehydrogenase (SCAD) deficiency is an inherited metabolic disorder biochemically characterized by tissue accumulation of predominantly ethylmalonic acid (EMA) and clinically by neurological dysfunction. In the present study we investigated the in vitro effects of EMA on the activity of the mitochondrial (Mi-CK) and cytosolic (Cy-CK) creatine kinase isoforms from cerebral cortex, skeletal muscle, and cardiac muscle of young rats. CK activities were measured in the mitochondrial and cytosolic fractions prepared from whole-tissue homogenates of 30-day-old Wistar rats. The acid was added to the incubation medium at concentrations ranging from 0.5 to 2.5 mM. EMA had no effect on Cy-CK activity, but significantly inhibited the activity of Mi-CK at 1.0 mM and higher concentrations in the brain. In contrast, both Mi-CK and Cy-CK from skeletal muscle and cardiac muscle were not affected by the metabolite. We also evaluated the effect of the antioxidants glutathione (GSH), ascorbic acid, and a-tocopherol and the nitric oxide synthase inhibitor L-NAME on the inhibitory action of EMA on cerebral cortex Mi-CK activity. We observed that the drugs did not modify Mi-CK activity per se, but GSH and ascorbic acid prevented the inhibitory effect of EMA when co-incubated with the acid. In contrast, L-NAME and α-tocopherol could not revert the inhibition provoked by EMA on Mi-CK activity. Considering the importance of CK for brain energy homeostasis, it is proposed that the inhibition of Mi-CK activity may be associated to the neurological symptoms characteristic of SCAD deficiency.


International Journal of Developmental Neuroscience | 2003

L-2-hydroxyglutaric acid inhibits mitochondrial creatine kinase activity from cerebellum of developing rats.

Cleide Goncalves da Silva; Ana Rubia Figueiredo Bueno; Patrícia Fernanda Schuck; Guilhian Leipnitz; César Augusto João Ribeiro; Clovis Milton Duval Wannmacher; Angela Terezinha de Souza Wyse; Moacir Wajner

l‐2‐Hydroxyglutaric acid (LGA) is the biochemical hallmark of patients affected by the neurometabolic disorder known as l‐2‐hydroxyglutaric aciduria (LHGA). Although this disorder is predominantly characterized by severe neurological findings and pronounced cerebellum atrophy, the neurotoxic mechanisms of brain injury are virtually unknown. In the present study, we investigated the effect of LGA, at 0.25–5 mM concentrations, on total creatine kinase (tCK) activity from cerebellum, cerebral cortex, cardiac muscle and skeletal muscle homogenates of 30‐day‐old Wistar rats. CK activity was measured also in the cytosolic (Cy‐CK) and mitochondrial (Mi‐CK) fractions from cerebellum. We verified that tCK activity was significantly inhibited by LGA in the cerebellum, but not in cerebral cortex, cardiac muscle and skeletal muscle. Furthermore, CK activity from the mitochondrial fraction was inhibited by LGA, whereas that from the cytosolic fraction of cerebellum was not affected by the acid. Kinetic studies revealed that the inhibitory effect of LGA on Mi‐CK was non‐competitive in relation to phosphocreatine. Finally, we verified that the inhibitory effect of LGA on tCK was fully prevented by pre‐incubation of the homogenates with reduced glutathione (GSH), suggesting that this inhibition is possibly mediated by oxidation of essential thiol groups of the enzyme. Considering the importance of creatine kinase activity for energy homeostasis, our results suggest that the selective inhibition of this enzyme activity by increased levels of LGA could be possibly related to the cerebellar degeneration characteristically found in patients affected by l‐2‐hydroxyglutaric aciduria.

Collaboration


Dive into the César Augusto João Ribeiro's collaboration.

Top Co-Authors

Avatar

Moacir Wajner

Universidade Federal do Rio Grande do Sul

View shared research outputs
Top Co-Authors

Avatar

Guilhian Leipnitz

Universidade Federal do Rio Grande do Sul

View shared research outputs
Top Co-Authors

Avatar

Patrícia Fernanda Schuck

Universidade do Extremo Sul Catarinense

View shared research outputs
Top Co-Authors

Avatar

Angela Terezinha de Souza Wyse

Universidade Federal do Rio Grande do Sul

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Karina Borges Dalcin

Universidade Federal do Rio Grande do Sul

View shared research outputs
Top Co-Authors

Avatar

Rafael Borba Rosa

Universidade Federal do Rio Grande do Sul

View shared research outputs
Top Co-Authors

Avatar

Bianca Seminotti

Universidade Federal do Rio Grande do Sul

View shared research outputs
Top Co-Authors

Avatar

Alexandre Umpierrez Amaral

Universidade Federal do Rio Grande do Sul

View shared research outputs
Top Co-Authors

Avatar

Gustavo da Costa Ferreira

Universidade Federal do Rio Grande do Sul

View shared research outputs
Researchain Logo
Decentralizing Knowledge