Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mateus Struecker da Rosa is active.

Publication


Featured researches published by Mateus Struecker da Rosa.


Molecular Genetics and Metabolism | 2012

Induction of oxidative stress in brain of glutaryl-CoA dehydrogenase deficient mice by acute lysine administration

Bianca Seminotti; Mateus Struecker da Rosa; Carolina Gonçalves Fernandes; Alexandre Umpierrez Amaral; Luisa Macedo Braga; Guilhian Leipnitz; Diogo O. Souza; Michael Woontner; David M. Koeller; Stephen I. Goodman; Moacir Wajner

In the present work we evaluated a variety of indicators of oxidative stress in distinct brain regions (striatum, cerebral cortex and hippocampus), the liver, and heart of 30-day-old glutaryl-CoA dehydrogenase deficient (Gcdh(-/-)) mice. The parameters evaluated included thiobarbituric acid-reactive substances (TBA-RS), 2-7-dihydrodichlorofluorescein (DCFH) oxidation, sulfhydryl content, and reduced glutathione (GSH) concentrations. We also measured the activities of the antioxidant enzymes glutathione peroxidase (GPx), glutathione reductase (GR), catalase (CAT), superoxide dismutase (SOD) and glucose-6-phosphate dehydrogenase (G6PD). Under basal conditions glutaric (GA) and 3-OH-glutaric (3OHGA) acids were elevated in all tissues of the Gcdh(-/-) mice, but were essentially absent in WT animals. In contrast there were no differences between WT and Gcdh(-/-) mice in any of the indicators or oxidative stress under basal conditions. Following a single intra-peritoneal (IP) injection of lysine (Lys) there was a moderate increase of brain GA concentration in Gcdh(-/-) mice, but no change in WT. Lys injection had no effect on brain 3OHGA in either WT or Gcdh(-/-) mice. The levels of GA and 3OHGA were approximately 40% higher in striatum compared to cerebral cortex in Lys-treated mice. In the striatum, Lys administration provoked a marked increase of lipid peroxidation, DCFH oxidation, SOD and GR activities, as well as significant reductions of GSH levels and GPx activity, with no alteration of sulfhydryl content, CAT and G6PD activities. There was also evidence of increased lipid peroxidation and SOD activity in the cerebral cortex, along with a decrease of GSH levels, but to a lesser extent than in the striatum. In the hippocampus only mild increases of SOD activity and DCFH oxidation were observed. In contrast, Lys injection had no effect on any of the parameters of oxidative stress in the liver or heart of Gcdh(-/-) or WT animals. These results indicate that in Gcdh(-/-) mice cerebral tissue, particularly the striatum, is at greater risk for oxidative stress than peripheral tissues following Lys administration.


Molecular Genetics and Metabolism | 2013

Disruption of brain redox homeostasis in glutaryl-CoA dehydrogenase deficient mice treated with high dietary lysine supplementation.

Bianca Seminotti; Alexandre Umpierrez Amaral; Mateus Struecker da Rosa; Carolina Gonçalves Fernandes; Guilhian Leipnitz; Silvia Olivera-Bravo; Luis Barbeito; César Augusto João Ribeiro; Diogo O. Souza; Michael Woontner; Stephen I. Goodman; David M. Koeller; Moacir Wajner

Deficiency of glutaryl-CoA dehydrogenase (GCDH) activity or glutaric aciduria type I (GA I) is an inherited neurometabolic disorder biochemically characterized by predominant accumulation of glutaric acid and 3-hydroxyglutaric acid in the brain and other tissues. Affected patients usually present acute striatum necrosis during encephalopathic crises triggered by metabolic stress situations, as well as chronic leukodystrophy and delayed myelination. Considering that the mechanisms underlying the brain injury in this disease are not yet fully established, in the present study we investigated important parameters of oxidative stress in the brain (cerebral cortex, striatum and hippocampus), liver and heart of 30-day-old GCDH deficient knockout (Gcdh(-/-)) and wild type (WT) mice submitted to a normal lysine (Lys) (0.9% Lys), or high Lys diets (2.8% or 4.7% Lys) for 60 h. It was observed that the dietary supplementation of 2.8% and 4.7% Lys elicited noticeable oxidative stress, as verified by an increase of malondialdehyde concentrations (lipid oxidative damage) and 2-7-dihydrodichlorofluorescein (DCFH) oxidation (free radical production), as well as a decrease of reduced glutathione levels and alteration of various antioxidant enzyme activities (antioxidant defenses) in the cerebral cortex and the striatum, but not in the hippocampus, the liver and the heart of Gcdh(-/-) mice, as compared to WT mice receiving the same diets. Furthermore, alterations of oxidative stress parameters in the cerebral cortex and striatum were more accentuated in symptomatic, as compared to asymptomatic Gcdh(-/-) mice exposed to 4.7% Lys overload. Histopathological studies performed in the cerebral cortex and striatum of these animals exposed to high dietary Lys revealed increased expression of oxidative stress markers despite the absence of significant structural damage. The results indicate that a disruption of redox homeostasis in the cerebral cortex and striatum of young Gcdh(-/-) mice exposed to increased Lys diet may possibly represent an important pathomechanism of brain injury in GA I patients under metabolic stress.


Life Sciences | 2011

Glycine intrastriatal administration induces lipid and protein oxidative damage and alters the enzymatic antioxidant defenses in rat brain

Bianca Seminotti; Lisiane Aurélio Knebel; Carolina Gonçalves Fernandes; Alexandre Umpierrez Amaral; Mateus Struecker da Rosa; Paula Eichler; Guilhian Leipnitz; Moacir Wajner

AIMS We investigated the effects of in vivo intrastriatal administration of glycine (Gly), which is found at high concentrations in the brain of patients affected by nonketotic hyperglycinemia (NKH), on important parameters of oxidative stress. MAIN METHODS Thiobarbituric acid-reactive substances values (TBA-RS, lipid peroxidation), carbonyl formation (protein oxidative damage), sulfhydryl content, reduced glutathione concentrations, nitric oxide production and the activities of the antioxidant enzymes glutathione peroxidase, glutathione reductase, catalase, superoxide dismutase and glucose-6-phosphate dehydrogenase (antioxidant defenses) were measured in striatum from 30-day-old rats after Gly injection. KEY FINDINGS Gly administration significantly increased TBA-RS values, implying lipid oxidative damage. Furthermore, Gly-induced increase of TBA-RS was fully prevented by the NMDA receptor antagonist MK-801, indicating the involvement of the NMDA glutamate receptor in this effect. Gly injection also induced protein carbonyl formation, as well as elevation of the activities of glutathione peroxidase, glutathione reductase, catalase and superoxide dismutase. In contrast, glutathione levels, sulfhydryl content, nitric oxide production and the activity of glucose-6-phosphate dehydrogenase were not modified by Gly. SIGNIFICANCE The data shows that Gly in vivo administration causes lipid peroxidation, probably secondary to NMDA stimulation, induces protein oxidation and modulates the activities of important antioxidant enzymes in the striatum. In case these findings can be extrapolated to the human NKH, it is feasible that oxidative stress may be involved in the pathophysiology of the brain injury observed in patients with this neurometabolic disease.


Free Radical Research | 2016

3-Hydroxy-3-methylglutaric and 3-methylglutaric acids impair redox status and energy production and transfer in rat heart: relevance for the pathophysiology of cardiac dysfunction in 3-hydroxy-3-methylglutaryl-coenzyme A lyase deficiency

Mateus Struecker da Rosa; Bianca Seminotti; César Augusto João Ribeiro; Belisa Parmeggiani; Mateus Grings; Moacir Wajner; Guilhian Leipnitz

Abstract 3-Hydroxy-3-methylglutaryl-coenzyme A lyase (HL) deficiency is characterized by tissue accumulation of 3-hydroxy-3-methylglutaric (HMG), and 3-methylglutaric (MGA) acids. Affected patients present cardiomyopathy, whose pathomechanisms are not yet established. We investigated the effects of HMG and MGA on energy and redox homeostasis in rat heart using in vivo and in vitro models. In vivo experiments showed that intraperitoneal administration of HMG and MGA decreased the activities of the respiratory chain complex II and creatine kinase (CK), whereas HMG also decreased the activity of complex II–III. Furthermore, HMG and MGA injection increased reactive species production and carbonyl formation, and decreased glutathione concentrations. Regarding the enzymatic antioxidant defenses, HMG and MGA increased glutathione peroxidase (GPx) and glutathione reductase (GR) activities, while only MGA diminished the activities of superoxide dismutase (SOD) and catalase, as well as the protein content of SOD1. Pre-treatment with melatonin (MEL) prevented MGA-induced decrease of CK activity and SOD1 levels. In vitro results demonstrated that HMG and MGA increased reactive species formation, induced lipid peroxidation and decreased glutathione. We also verified that reactive species overproduction and glutathione decrease provoked by HMG and MGA were abrogated by MEL and lipoic acid (LA), while only MEL prevented HMG- and MGA-induced lipoperoxidation. Allopurinol (ALP) also prevented reactive species overproduction caused by both metabolites. Our data provide solid evidence that bioenergetics dysfunction and oxidative stress are induced by HMG and MGA in heart, which may explain the cardiac dysfunction observed in HL deficiency, and also suggest that antioxidant supplementation could be considered as adjuvant therapy for affected patients.


Neurotoxicity Research | 2017

α-Ketoadipic Acid and α-Aminoadipic Acid Cause Disturbance of Glutamatergic Neurotransmission and Induction of Oxidative Stress In Vitro in Brain of Adolescent Rats

Janaína Camacho da Silva; Alexandre Umpierrez Amaral; Cristiane Cecatto; Alessandro Wajner; Kálita dos Santos Godoy; Rafael Teixeira Ribeiro; Aline de Mello Gonçalves; Ângela Zanatta; Mateus Struecker da Rosa; Samanta Oliveira Loureiro; Carmen Regla Vargas; Guilhian Leipnitz; Diogo O. Souza; Moacir Wajner

Tissue accumulation of α-ketoadipic (KAA) and α-aminoadipic (AAA) acids is the biochemical hallmark of α-ketoadipic aciduria. This inborn error of metabolism is currently considered a biochemical phenotype with uncertain clinical significance. Considering that KAA and AAA are structurally similar to α-ketoglutarate and glutamate, respectively, we investigated the in vitro effects of these compounds on glutamatergic neurotransmission in the brain of adolescent rats. Bioenergetics and redox homeostasis were also investigated because they represent fundamental systems for brain development and functioning. We first observed that AAA significantly decreased glutamate uptake, whereas glutamate dehydrogenase activity was markedly inhibited by KAA in a competitive fashion. In addition, AAA and more markedly KAA induced generation of reactive oxygen and nitrogen species (increase of 2′,7′-dichloroflurescein (DCFH) oxidation and nitrite/nitrate levels), lipid peroxidation (increase of malondialdehyde concentrations), and protein oxidation (increase of carbonyl formation and decrease of sulfhydryl content), besides decreasing the antioxidant defenses (reduced glutathione (GSH)) and aconitase activity. Furthermore, KAA-induced lipid peroxidation and GSH decrease were prevented by the antioxidants α-tocopherol, melatonin, and resveratrol, suggesting the involvement of reactive species in these effects. Noteworthy, the classical inhibitor of NMDA glutamate receptors MK-801 was not able to prevent KAA-induced and AAA-induced oxidative stress, determined by DCFH oxidation and GSH levels, making unlikely a secondary induction of oxidative stress through overstimulation of glutamate receptors. In contrast, KAA and AAA did not significantly change brain bioenergetic parameters. We speculate that disturbance of glutamatergic neurotransmission and redox homeostasis by KAA and AAA may play a role in those cases of α-ketoadipic aciduria that display neurological symptoms.


Neurotoxicity Research | 2017

Disruption of Energy Transfer and Redox Status by Sulfite in Hippocampus, Striatum, and Cerebellum of Developing Rats

Leonardo de Moura Alvorcem; Mateus Struecker da Rosa; Nícolas Manzke Glänzel; Belisa Parmeggiani; Mateus Grings; Felipe Schmitz; Angela Terezinha de Souza Wyse; Moacir Wajner; Guilhian Leipnitz

Patients with sulfite oxidase (SO) deficiency present severe brain abnormalities, whose pathophysiology is not yet elucidated. We evaluated the effects of sulfite and thiosulfate, metabolites accumulated in SO deficiency, on creatine kinase (CK) activity, mitochondrial respiration and redox status in hippocampus, striatum and cerebellum of developing rats. Our in vitro results showed that sulfite and thiosulfate decreased CK activity, whereas sulfite also increased malondialdehyde (MDA) levels in all brain structures evaluated. Sulfite further diminished mitochondrial respiration and increased DCFH oxidation and hydrogen peroxide production in hippocampus. Sulfite-induced CK activity decrease was prevented by melatonin (MEL), resveratrol (RSV), and dithiothreitol while increase of MDA levels was prevented by MEL and RSV. Regarding the antioxidant system, sulfite increased glutathione concentrations in hippocampus and striatum. In addition, sulfite decreased the activities of glutathione peroxidase in all brain structures, of glutathione S-transferase in hippocampus and cerebellum, and of glutathione reductase in cerebellum. In vivo experiments performed with intrahippocampal administration of sulfite demonstrated that this metabolite increased superoxide dismutase activity without altering other biochemical parameters in rat hippocampus. Our data suggest that impairment of energy metabolism and redox status may be important pathomechanisms involved in brain damage observed in individuals with SO deficiency.


Molecular Neurobiology | 2018

Disruption of Brain Redox Homeostasis, Microglia Activation and Neuronal Damage Induced by Intracerebroventricular Administration of S-Adenosylmethionine to Developing Rats

Bianca Seminotti; Ângela Zanatta; Rafael Teixeira Ribeiro; Mateus Struecker da Rosa; Angela Terezinha de Souza Wyse; Guilhian Leipnitz; Moacir Wajner

S-Adenosylmethionine (AdoMet) concentrations are highly elevated in tissues and biological fluids of patients affected by S-adenosylhomocysteine hydrolase deficiency. This disorder is clinically characterized by severe neurological symptoms, whose pathophysiology is not yet established. Therefore, we investigated the effects of intracerebroventricular administration of AdoMet on redox homeostasis, microglia activation, synaptophysin levels, and TAU phosphorylation in cerebral cortex and striatum of young rats. AdoMet provoked significant lipid and protein oxidation, decreased glutathione concentrations, and altered the activity of important antioxidant enzymes in cerebral cortex and striatum. AdoMet also increased reactive oxygen (2′,7′-dichlorofluorescein oxidation increase) and nitrogen (nitrate and nitrite levels increase) species generation in cerebral cortex. Furthermore, the antioxidants N-acetylcysteine and melatonin prevented most of AdoMet-induced pro-oxidant effects in both cerebral structures. Finally, we verified that AdoMet produced microglia activation by increasing Iba1 staining and TAU phosphorylation, as well as reduced synaptophysin levels in cerebral cortex. Taken together, it is presumed that impairment of redox homeostasis possibly associated with microglia activation and neuronal dysfunction caused by AdoMet may represent deleterious pathomechanisms involved in the pathophysiology of brain damage in S-adenosylhomocysteine hydrolase deficiency.


Molecular Genetics and Metabolism | 2013

In vivo experimental evidence that the major metabolites accumulating in 3-hydroxy-3-methylglutaryl-CoA lyase deficiency induce oxidative stress in striatum of developing rats: a potential pathophysiological mechanism of striatal damage in this disorder.

Carolina Gonçalves Fernandes; Mateus Struecker da Rosa; Bianca Seminotti; Paula Pierozan; Rafael Wolter Martell; Valeska Lizzi Lagranha; Estela Natacha Brandt Busanello; Guilhian Leipnitz; Moacir Wajner


Free Radical Biology and Medicine | 2015

In vivo intracerebral administration of L-2-hydroxyglutaric acid provokes oxidative stress and histopathological alterations in striatum and cerebellum of adolescent rats.

Mateus Struecker da Rosa; César Augusto João Ribeiro; Bianca Seminotti; Rafael Teixeira Ribeiro; Alexandre Umpierrez Amaral; Daniella de Moura Coelho; Francine Hehn de Oliveira; Guilhian Leipnitz; Moacir Wajner


Journal of the Neurological Sciences | 2014

Acute lysine overload provokes protein oxidative damage and reduction of antioxidant defenses in the brain of infant glutaryl-CoA dehydrogenase deficient mice: A role for oxidative stress in GA I neuropathology

Bianca Seminotti; Rafael Teixeira Ribeiro; Alexandre Umpierrez Amaral; Mateus Struecker da Rosa; Carolina Pereira; Guilhian Leipnitz; David M. Koeller; Stephen I. Goodman; Michael Woontner; Moacir Wajner

Collaboration


Dive into the Mateus Struecker da Rosa's collaboration.

Top Co-Authors

Avatar

Guilhian Leipnitz

Universidade Federal do Rio Grande do Sul

View shared research outputs
Top Co-Authors

Avatar

Moacir Wajner

Universidade Federal do Rio Grande do Sul

View shared research outputs
Top Co-Authors

Avatar

Bianca Seminotti

Universidade Federal do Rio Grande do Sul

View shared research outputs
Top Co-Authors

Avatar

Alexandre Umpierrez Amaral

Universidade Federal do Rio Grande do Sul

View shared research outputs
Top Co-Authors

Avatar

Carolina Gonçalves Fernandes

Universidade Federal do Rio Grande do Sul

View shared research outputs
Top Co-Authors

Avatar

César Augusto João Ribeiro

Universidade Federal do Rio Grande do Sul

View shared research outputs
Top Co-Authors

Avatar

Rafael Teixeira Ribeiro

Universidade Federal do Rio Grande do Sul

View shared research outputs
Top Co-Authors

Avatar

Diogo O. Souza

Universidade Federal do Rio Grande do Sul

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Michael Woontner

University of Colorado Denver

View shared research outputs
Researchain Logo
Decentralizing Knowledge