Bijumon Gangadharan
Siemens
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Bijumon Gangadharan.
Medical Physics | 2008
B Faddegon; Vincent Wu; Jean Pouliot; Bijumon Gangadharan; Ali Bani-Hashemi
Megavoltage cone beam computed tomography (MVCBCT) is routinely used for visualizing anatomical structures and implanted fiducials for patient positioning in radiotherapy. MVCBCT using a 6 MV treatment beam with high atomic number (Z) target and flattening filter in the beamline, as done conventionally, has lower image quality than can be achieved with a MV beam due to heavy filtration of the low-energy bremsstrahlung. The unflattened beam of a low Z target has an abundance of diagnostic energy photons, detected with modern flat panel detectors with much higher efficiency given the same dose to the patient. This principle guided the development of a new megavoltage imaging beamline (IBL) for a commercial radiotherapy linear accelerator. A carbon target was placed in one of the electron primary scattering foil slots on the target-foil slide. A PROM on a function controller board was programed to put the carbon target in place for MVCBCT. A low accelerating potential of 4.2 MV was used for the IBL to restrict leakage of primary electrons through the target such that dose from x rays dominated the signal in the monitor chamber and the patient surface dose. Results from phantom and cadaver images demonstrated that the IBL had much improved image quality over the treatment beam. For similar imaging dose, the IBL improved the contrast-to-noise ratio by as much as a factor of 3 in soft tissue over that of the treatment beam. The IBL increased the spatial resolution by about a factor of 2, allowing the visualization of finer anatomical details. Images of the cadaver contained useful information with doses as low as 1 cGy. The IBL may be installed on certain models of linear accelerators without mechanical modification and results in significant improvement in the image quality with the same dose, or images of the same quality with less than one-third of the dose.
IEEE Transactions on Medical Imaging | 2008
Jonathan S. Maltz; Bijumon Gangadharan; Supratik Bose; Dimitre Hristov; B Faddegon; Ajay Paidi; Ali Bani-Hashemi
Quantitative reconstruction of cone beam X-ray computed tomography (CT) datasets requires accurate modeling of scatter, beam-hardening, beam profile, and detector response. Typically, commercial imaging systems use fast empirical corrections that are designed to reduce visible artifacts due to incomplete modeling of the image formation process. In contrast, Monte Carlo (MC) methods are much more accurate but are relatively slow. Scatter kernel superposition (SKS) methods offer a balance between accuracy and computational practicality. We show how a single SKS algorithm can be employed to correct both kilovoltage (kV) energy (diagnostic) and megavoltage (MV) energy (treatment) X-ray images. Using MC models of kV and MV imaging systems, we map intensities recorded on an amorphous silicon flat panel detector to water-equivalent thicknesses (WETs). Scattergrams are derived from acquired projection images using scatter kernels indexed by the local WET values and are then iteratively refined using a scatter magnitude bounding scheme that allows the algorithm to accommodate the very high scatter-to-primary ratios encountered in kV imaging. The algorithm recovers radiological thicknesses to within 9% of the true value at both kV and megavolt energies. Nonuniformity in CT reconstructions of homogeneous phantoms is reduced by an average of 76% over a wide range of beam energies and phantom geometries.
Medical Physics | 2008
Jonathan S. Maltz; Bijumon Gangadharan; Marie Vidal; Ajay Paidi; Supratik Bose; B Faddegon; Michele Aubin; Olivier Morin; Jean Pouliot; Zirao Zheng; Michelle Marie Svatos; Ali Bani-Hashemi
We describe a focused beam-stop array (BSA) for the measurement of object scatter in imaging systems that utilize x-ray beams in the megavoltage (MV) energy range. The BSA consists of 64 doubly truncated tungsten cone elements of 0.5 cm maximum diameter that are arranged in a regular array on an acrylic slab. The BSA is placed in the accessory tray of a medical linear accelerator at a distance of approximately 50 cm from the focal spot. We derive an expression that allows us to estimate the scatter in an image taken without the array present, given image values in a second image with the array in place. The presence of the array reduces fluence incident on the imaged object. This leads to an object-dependent underestimation bias in the scatter measurements. We apply corrections in order to address this issue. We compare estimates of the flat panel detector response to scatter obtained using the BSA to those derived from Monte Carlo simulations. We find that the two estimates agree to within 10% in terms of RMS error for 30 cm x 30 cm water slabs in the thickness range of 10-30 cm. Larger errors in the scatter estimates are encountered for thinner objects, probably owing to extrafocal radiation sources. However, RMS errors in the estimates of primary images are no more than 5% for water slab thicknesses in the range of 1-30 cm. The BSA scatter estimates are also used to correct cone beam tomographic projections. Maximum deviations of central profiles of uniform water phantoms are reduced from 193 to 19 HU after application of corrections for scatter, beam hardening, and lateral truncation that are based on the BSA-derived scatter estimate. The same corrections remove the typical cupping artifact from both phantom and patient images. The BSA proves to be a useful tool for quantifying and removing image scatter, as well as for validating models of MV imaging systems.
Journal of Applied Clinical Medical Physics | 2009
Chris Beltran; Renin Lukose; Bijumon Gangadharan; Ali Bani-Hashemi; B Faddegon
To measure and compare the contrast to noise ratio (CNR) as a function of dose for the CBCTs produced by the mega‐voltage (MV) imaging beam line (IBL) and the treatment beam line (TBL), and to compare the dose to target and various critical structures of pediatric patients for the IBL CBCT versus standard TBL orthogonal port films. Two Siemens Oncor linear accelerators were modified at our institution such that the MV‐CBCT would operate under an investigational IBL rather than the standard 6MV TBL. Prior to the modification, several CBCTs of an electron density phantom were acquired with the TBL at various dose values. After the modification, another set of CBCTs of the electron density phantom were acquired for various doses using the IBL. The contrast to noise ratio (CNR) for each tissue equivalent insert was calculated. In addition, a dosimetric study of pediatric patients was conducted comparing the 1 cGy IBL CBCT and conventional TBL orthogonal pair port films. The CNR for eight tissue equivalent inserts at five different dose settings for each type of CBCT was measured. The CNR of the muscle insert was 0.8 for a 5 cGy TBL CBCT, 1.1 for a 1.5 cGy IBL CBCT, and 2.8 for a conventional CT. The CNR of the trabecular bone insert was 2.9 for a 5 cGy TBL CBCT, 5.5 for a 1.5 cGy IBL CBCT, and 14.8 for a conventional CT. The IBL CBCT delivered approximately one‐fourth the dose to the target and critical structures of the patients as compared to the TBL orthogonal pair port films. The IBL CBCT improves image quality while simultaneously reducing the dose to the patient as compared to the TBL CBCT. A 1 cGy IBL CBCT, which is used for bony anatomy localization, delivers one‐fourth the dose as compared to conventional ortho‐pair films. PACS number: 87.57.Q, 87.57.cj, 87.53.Jw
Medical Physics | 2010
B Faddegon; Michele Aubin; Ali Bani-Hashemi; Bijumon Gangadharan; Alexander Gottschalk; Olivier Morin; D Sawkey; Vincent Wu; Sue S. Yom
PURPOSE To use an imaging beam line (IBL) to obtain the first megavoltage cone-beam computed tomography (MV CBCT) images of patients with a low atomic number (Z) target, and to compare these images to those taken of the same patients with the 6 MV flattened beam from the treatment beam line (TBL). METHODS The IBL, which produces a 4.2 MV unflattened beam from a carbon target, was installed on a linear accelerator in use for radiotherapy. Provision was made for switching between the IBL and TBL for imaging the same patient with beams from the low-Z and high-Z targets. Dose was quoted as monitor units times the dose per monitor unit for the standard calibration geometry. Images were acquired with institutional approval and patient consent with both the IBL and TBL on a series of 23 patients undergoing radiotherapy. Patients were imaged daily to weekly and aligned to the planning CT using the images. Doses were reduced over the course of treatment to determine the minimum doses required for alignment. Images were assessed offline. RESULTS IBL MV CBCT images of prostate, head and neck, lung, and abdomen showed improvement in soft tissue contrast for the same dose as the TBL images. Bony anatomy, air cavities, and fiducial markers were sharper. CBCT with a dose of 1 cGy was sufficient for alignment of prostate and head and neck patients based on bony anatomy or implanted gold seeds, 2-4 cGy for lung, abdomen, and pelvis. Photon scatter in the patient had minimal effect on image quality. The metallic hip prosthesis in one patient showed reduced artifacts compared to diagnostic CT. CONCLUSIONS The IBL has the advantage of improved image quality at the same dose, or reduced dose for the same image quality, over the TBL.
Medical Physics | 2011
Elizabeth K. Breitbach; Jonathan S. Maltz; Bijumon Gangadharan; Ali Bani-Hashemi; Carryn M. Anderson; Sudershan K. Bhatia; Jared Stiles; D Edwards; R Flynn
PURPOSE To quantify the improvement in megavoltage cone beam computed tomography (MVCBCT) image quality enabled by the combination of a 4.2 MV imaging beam line (IBL) with a carbon electron target and a detector system equipped with a novel sintered pixelated array (SPA) of translucent Gd(2)O(2)S ceramic scintillator. Clinical MVCBCT images are traditionally acquired with the same 6 MV treatment beam line (TBL) that is used for cancer treatment, a standard amorphous Si (a-Si) flat panel imager, and the Kodak Lanex Fast-B (LFB) scintillator. The IBL produces a greater fluence of keV-range photons than the TBL, to which the detector response is more optimal, and the SPA is a more efficient scintillator than the LFB. METHODS A prototype IBL + SPA system was installed on a Siemens Oncor linear accelerator equipped with the MVision(TM) image guided radiation therapy (IGRT) system. A SPA strip consisting of four neighboring tiles and measuring 40 cm by 10.96 cm in the crossplane and inplane directions, respectively, was installed in the flat panel imager. Head- and pelvis-sized phantom images were acquired at doses ranging from 3 to 60 cGy with three MVCBCT configurations: TBL + LFB, IBL + LFB, and IBL + SPA. Phantom image quality at each dose was quantified using the contrast-to-noise ratio (CNR) and modulation transfer function (MTF) metrics. Head and neck, thoracic, and pelvic (prostate) cancer patients were imaged with the three imaging system configurations at multiple doses ranging from 3 to 15 cGy. The systems were assessed qualitatively from the patient image data. RESULTS For head and neck and pelvis-sized phantom images, imaging doses of 3 cGy or greater, and relative electron densities of 1.09 and 1.48, the CNR average improvement factors for imaging system change of TBL + LFB to IBL + LFB, IBL + LFB to IBL + SPA, and TBL + LFB to IBL + SPA were 1.63 (p < 10(- 8)), 1.64 (p < 10(- 13)), 2.66 (p < 10(- 9)), respectively. For all imaging doses, soft tissue contrast was more easily differentiated on IBL + SPA head and neck and pelvic images than TBL + LFB and IBL + LFB. IBL + SPA thoracic images were comparable to IBL + LFB images, but less noisy than TBL + LFB images at all imaging doses considered. The mean MTFs over all imaging doses were comparable, at within 3%, for all imaging system configurations for both the head- and pelvis-sized phantoms. CONCLUSIONS Since CNR scales with the square root of imaging dose, changing from TBL + LFB to IBL + LFB and IBL + LFB to IBL + SPA reduces the imaging dose required to obtain a given CNR by factors of 0.38 and 0.37, respectively. MTFs were comparable between imaging system configurations. IBL + SPA patient image quality was always better than that of the TBL + LFB system and as good as or better than that of the IBL + LFB system, for a given dose.
Medical Physics | 2006
Jonathan S. Maltz; Bijumon Gangadharan; Dimitre Hristov; Ajay Paidi; Supratik Bose; Ali Bani-Hashemi
Purpose: Quantitative cone beam CT(CBCT) is essential for advanced radiation oncology (RO) applications such as portal image‐based 3D dose reconstruction. Quantitative CT requires accurate modeling of scatter, beam‐hardening and detector response. Scatter correction methods are typically semi‐empirical in nature and are designed to reduce visible artifacts while incurring low computational cost. In contrast, Monte Carlo(MC) methods are accurate but impractically slow. Convolution‐superposition (CS) scatter models offer a good balance between accuracy and computational complexity. We show how CS can be employed to implement a unified correction method that enables quantitative kV and MV imaging.Method and Materials: (1) We perform detailed MC modeling of the kV and MV cone beam imaging systems. (2) Using MC, we generate calibration data that map intensities recorded on the flat panel imagers to water‐equivalent thicknesses (WETs). (3) The MC models are used to generate pencil beam kernels for water cylinders of varying thickness. (4) Scattergrams are generated from acquired projection images via the CS method using these kernels indexed by the WET at each pixel. (5) Scattergrams are iteratively refined using a multiplicative correction formula that ensures that the estimated primary image remains non‐negative even when scatter‐to‐primary ratios are very high. (6) The FDK reconstruction algorithm is applied directly to the thickness maps corresponding to the estimated primary images.Results: The algorithm is able to reduce maximum non‐uniformity in the reconstruction of a 16cm cylindrical homogeneous tissue equivalent phantom from 11.7% to 1.5%. When applied to a challenging 35cm × 22.5cm oblong water phantom, a non‐uniformity reduction in from 36% to 2.5% is achieved. A dataset of 200 1024×1024 projections can be processed in 25 seconds. Conclusions: CS methods can be used at both kV and MV energies to enable reconstruction of quantitative CBCTimages.Conflict of Interest: Supported by Siemens.
Medical Physics | 2005
Michelle Marie Svatos; G. Pang; Bijumon Gangadharan; Jonathan S. Maltz; Ali Bani-Hashemi; P O'Brien; John A. Rowlands
Purpose: The purpose of this work is to devise an efficient, effective and routine imaging modality to guide lungradiotherapy. Current methods involve acquiring a 4D‐CBCT and comparing the digitally reconstructedradiographs (DRRs) for multiple breathing phases with online fluoroscopic images. A major shortcoming of DRRs and fluoroscopy is that unwanted structures such as bones occlude the target. Furthermore 4D‐CBCT requires long acquisition times and large patient dose, making it impractical for routine use. Method and Materials: We propose a partial arc cone beam acquisition, which we call “cone beam digital tomosynthesis” (CBDT), to obtain cross‐sectional images of a slab just thick enough to enclose the soft tissue target. Projections through this slab make “digitally reconstructed tomograms” (DRTs). Similar to DRRs, DRTs correct for beam divergence. However, different from DRRs, DRTs do not contain irrelevant structures outside the slab, making the target far more conspicuous. By gating this acquisition, dynamic cross sections and DRTs are obtained at multiple respiratory phases. These dynamic images are registered with those obtained from the planning 4D‐CT dataset to guide treatment. Results: The DRRs constructed from multiple phases of a 4D‐CT emphasize bony anatomy and other irrelevant structures overlaying the target, making the edges of the target difficult to find. We have demonstrated that this difficulty is overcome by the use of cross‐sectional images from CBDT and DRTs, which are obtained with an image acquisition time that is significantly shorter than full‐volume 4D‐CBCT. Matching DRTs were obtained from the planning 4D‐CT for each phase. 2D‐2D registrations were performed to obtain the phase‐varying offset. Conclusion: A new imaging technique has been introduced for image‐guidedlung treatment. With this approach, images are acquired faster and the appearance of the tumor is significantly enhanced by eliminating many extraneous structures. Conflict of Interest: This work is supported by Siemens.
Medical Physics | 2008
Martin Koch; Jonathan S. Maltz; Serge J. Belongie; Bijumon Gangadharan; Supratik Bose; Himanshu P. Shukla; Ali Bani-Hashemi
The accurate delivery of external beam radiation therapy is often facilitated through the implantation of radio-opaque fiducial markers (gold seeds). Before the delivery of each treatment fraction, seed positions can be determined via low dose volumetric imaging. By registering these seed locations with the corresponding locations in the previously acquired treatment planning computed tomographic (CT) scan, it is possible to adjust the patient position so that seed displacement is accommodated. The authors present an unsupervised automatic algorithm that identifies seeds in both planning and pretreatment images and subsequently determines a rigid geometric transformation between the two sets. The algorithm is applied to the imaging series of ten prostate cancer patients. Each test series is comprised of a single multislice planning CT and multiple megavoltage conebeam (MVCB) images. Each MVCB dataset is obtained immediately prior to a subsequent treatment session. Seed locations were determined to within 1 mm with an accuracy of 97 ± 6.1 % for datasets obtained by application of a mean imagingdose of 3.5 cGy per study. False positives occurred in three separate instances, but only when datasets were obtained at imagingdoses too low to enable fiducial resolution by a human operator, or when the prostate gland had undergone large displacement or significant deformation. The registration procedure requires under nine seconds of computation time on a typical contemporary computer workstation.
Medical Physics | 2009
Jonathan S. Maltz; J Hartmann; A Dubouloz; Ajay Paidi; Bijumon Gangadharan; G Hoerauf; Ali Bani-Hashemi
We describe the fabrication and evaluation of a thick pixelated scintillator for megavoltage (MV) imaging composed of a ceramic containing over 99.9% gadolium oxysulfide. This sintered material offers a 59% increase in density over the Lanex Fast B (LFB) phosphor screens most commonly employed in MV imaging. The sintered pixelated array (SPA) is fabricated from a single slab of ceramic. This obviates the need to assemble over a million separate crystals in order to cover a 40.96cm × 40.96cm detector area. As a consequence, the design is amenable to fabrication using methods of mass production. Method and Materials: A 1.8mm‐thick 274 × 250 pixel SPA with 0.4mm pixel pitch is attached to the light‐sensitive surface of an amorphous silicon flat panel detector (Perkin Elmer XRD1640AN). Image quality is characterized using 1MU exposures of the 6MV beam of a Siemens Primus Linac. A QC‐3V phantom is employed to calculate the modulation transfer function(MTF) and contrast‐to‐noise ratio (CNR). The detective quantum efficiency (DQE) is computed. A LFB screen is then evaluated under identical conditions for comparative purposes. Cone beam CT(CBCT)imaging is performed with four arrays tiled side‐by‐side on the detector surface. Results: The half‐maximum value of MTF occurs at 0.32 and 0.34lp/mm for the SPA and LFB, respectively. The DQE(0.1lp/mm) of SPA is 5.8%, versus 1.0% for LFB. The SPA offers a 235% improvement in CNR over LFB. Previously undetectable low‐contrast phantom inserts are clearly visible in SPA MV‐CBCT images.Conclusions: The SPA appears to offer a practical and cost‐effective means of attaining major improvements in MV image quality. The measured MTF and DQE values underestimate the achievable performance, since the SPA and detector photodiode arrays were imperfectly aligned during these evaluations. A DQE(0) value closer to the maximum attainable 7.8% is expected. Conflict of Interest: Sponsored by Siemens.