Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Bill Wohler is active.

Publication


Featured researches published by Bill Wohler.


The Astrophysical Journal | 2010

OVERVIEW OF THE KEPLER SCIENCE PROCESSING PIPELINE

Jon M. Jenkins; Douglas A. Caldwell; Hema Chandrasekaran; Joseph D. Twicken; Stephen T. Bryson; Elisa V. Quintana; Bruce D. Clarke; Jie Li; Christopher Allen; Peter Tenenbaum; Hayley Wu; Todd C. Klaus; Christopher K. Middour; Miles T. Cote; Sean McCauliff; Forrest R. Girouard; Jay P. Gunter; Bill Wohler; Jeneen Sommers; Jennifer R. Hall; Akm Kamal Uddin; Michael S. Wu; Paresh Bhavsar; Jeffrey Edward van Cleve; David L. Pletcher; Jessie A. Dotson; Michael R. Haas; Ronald L. Gilliland; David G. Koch; William J. Borucki

The Kepler Mission Science Operations Center (SOC) performs several critical functions including managing the ~156,000 target stars, associated target tables, science data compression tables and parameters, as well as processing the raw photometric data downlinked from the spacecraft each month. The raw data are first calibrated at the pixel level to correct for bias, smear induced by a shutterless readout, and other detector and electronic effects. A background sky flux is estimated from ~4500 pixels on each of the 84 CCD readout channels, and simple aperture photometry is performed on an optimal aperture for each star. Ancillary engineering data and diagnostic information extracted from the science data are used to remove systematic errors in the flux time series that are correlated with these data prior to searching for signatures of transiting planets with a wavelet-based, adaptive matched filter. Stars with signatures exceeding 7.1? are subjected to a suite of statistical tests including an examination of each stars centroid motion to reject false positives caused by background eclipsing binaries. Physical parameters for each planetary candidate are fitted to the transit signature, and signatures of additional transiting planets are sought in the residual light curve. The pipeline is operational, finding planetary signatures and providing robust eliminations of false positives.


The Astrophysical Journal | 2012

A Uniform Asteroseismic Analysis of 22 Solar-type Stars Observed by Kepler

S. Mathur; T. S. Metcalfe; M. Woitaszek; H. Bruntt; G. A. Verner; Jørgen Christensen-Dalsgaard; O. L. Creevey; G. Doğan; Sarbani Basu; C. Karoff; D. Stello; T. Appourchaux; T. L. Campante; W. J. Chaplin; R. A. García; Timothy R. Bedding; O. Benomar; Alfio Bonanno; S. Deheuvels; Y. Elsworth; P. Gaulme; Joyce Ann Guzik; R. Handberg; S. Hekker; W. Herzberg; M. J. P. F. G. Monteiro; L. Piau; P.-O. Quirion; C. Regulo; Mary Tork Roth

Asteroseismology with the Kepler space telescope is providing not only an improved characterization of exoplanets and their host stars, but also a new window on stellar structure and evolution for the large sample of solar-type stars in the field. We perform a uniform analysis of 22 of the brightest asteroseismic targets with the highest signal-to-noise ratio observed for 1 month each during the first year of the mission, and we quantify the precision and relative accuracy of asteroseismic determinations of the stellar radius, mass, and age that are possible using various methods. We present the properties of each star in the sample derived from an automated analysis of the individual oscillation frequencies and other observational constraints using the Asteroseismic Modeling Portal (AMP), and we compare them to the results of model-grid-based methods that fit the global oscillation properties. We find that fitting the individual frequencies typically yields asteroseismic radii and masses to ~1% precision, and ages to ~2.5% precision (respectively, 2, 5, and 8 times better than fitting the global oscillation properties). The absolute level of agreement between the results from different approaches is also encouraging, with model-grid-based methods yielding slightly smaller estimates of the radius and mass and slightly older values for the stellar age relative to AMP, which computes a large number of dedicated models for each star. The sample of targets for which this type of analysis is possible will grow as longer data sets are obtained during the remainder of the mission.


The Astrophysical Journal | 2011

A First Comparison of Kepler Planet Candidates in Single and Multiple Systems

David W. Latham; Jason F. Rowe; Samuel N. Quinn; Natalie M. Batalha; William J. Borucki; Timothy M. Brown; Stephen T. Bryson; Lars A. Buchhave; Douglas A. Caldwell; Joshua A. Carter; Jessie L. Christiansen; David R. Ciardi; William D. Cochran; Edward W. Dunham; Daniel C. Fabrycky; Eric B. Ford; Thomas N. Gautier; Ronald L. Gilliland; Matthew J. Holman; Steve B. Howell; Khadeejah A. Ibrahim; Howard Isaacson; Jon M. Jenkins; David G. Koch; Jack J. Lissauer; Geoffrey W. Marcy; Elisa V. Quintana; Darin Ragozzine; Dimitar D. Sasselov; Avi Shporer

In this Letter, we present an overview of the rich population of systems with multiple candidate transiting planets found in the first four months of Kepler data. The census of multiples includes 115 targets that show two candidate planets, 45 with three, eight with four, and one each with five and six, for a total of 170 systems with 408 candidates. When compared to the 827 systems with only one candidate, the multiples account for 17% of the total number of systems, and one-third of all the planet candidates. We compare the characteristics of candidates found in multiples with those found in singles. False positives due to eclipsing binaries are much less common for the multiples, as expected. Singles and multiples are both dominated by planets smaller than Neptune; 69^(+2)_(–3)% for singles and 86^(+2)_(–5)% for multiples. This result, that systems with multiple transiting planets are less likely to include a transiting giant planet, suggests that close-in giant planets tend to disrupt the orbital inclinations of small planets in flat systems, or maybe even prevent the formation of such systems in the first place.


Astrophysical Journal Supplement Series | 2011

KOI-54: The Kepler Discovery of Tidally Excited Pulsations and Brightenings in a Highly Eccentric Binary

William F. Welsh; Jerome A. Orosz; Conny Aerts; Timothy M. Brown; Erik Brugamyer; William D. Cochran; Ronald L. Gilliland; Joyce Ann Guzik; D. W. Kurtz; David W. Latham; Geoffrey W. Marcy; Samuel N. Quinn; Wolfgang Zima; Christopher Allen; Natalie M. Batalha; Steve Bryson; Lars A. Buchhave; Douglas A. Caldwell; Thomas N. Gautier; Steve B. Howell; Karen Kinemuchi; Khadeejah A. Ibrahim; Howard Isaacson; Jon M. Jenkins; Andrej Prsa; Martin Still; R. A. Street; Bill Wohler; David G. Koch; William J. Borucki

Kepler observations of the star HD 187091 (KIC 8112039, hereafter KOI-54) revealed a remarkable light curve exhibiting sharp periodic brightening events every 41.8 days with a superimposed set of oscillations forming a beating pattern in phase with the brightenings. Spectroscopic observations revealed that this is a binary star with a highly eccentric orbit, e = 0.83. We are able to match the Kepler light curve and radial velocities with a nearly face-on (i = 55) binary star model in which the brightening events are caused by tidal distortion and irradiation of nearly identical A stars during their close periastron passage. The two dominant oscillations in the light curve, responsible for the beating pattern, have frequencies that are the 91st and 90th harmonic of the orbital frequency. The power spectrum of the light curve, after removing the binary star brightening component, reveals a large number of pulsations, 30 of which have a signal-to-noise ratio 7. Nearly all of these pulsations have frequencies that are either integer multiples of the orbital frequency or are tidally split multiples of the orbital frequency. This pattern of frequencies unambiguously establishes the pulsations as resonances between the dynamic tides at periastron and the free oscillation modes of one or both of the stars. KOI-54 is only the fourth star to show such a phenomenon and is by far the richest in terms of excited modes.


The Astrophysical Journal | 2010

Discovery and Rossiter-McLaughlin Effect of Exoplanet Kepler-8b

Jon M. Jenkins; William J. Borucki; David G. Koch; Geoffrey W. Marcy; William D. Cochran; William F. Welsh; Gibor Basri; Natalie M. Batalha; Lars A. Buchhave; Timothy M. Brown; Douglas A. Caldwell; Edward W. Dunham; Michael Endl; Debra A. Fischer; Thomas N. Gautier; John C. Geary; Ronald L. Gilliland; Steve B. Howell; Howard Isaacson; John Asher Johnson; David W. Latham; Jack J. Lissauer; David G. Monet; Jason F. Rowe; Dimitar D. Sasselov; Andrew W. Howard; Phillip J. MacQueen; Jerome A. Orosz; Hema Chandrasekaran; Joseph D. Twicken

We report on the discovery and the Rossiter-McLaughlin (R-M) effect of Kepler-8b, a transiting planet identified by the NASA Kepler Mission. Kepler photometry and Keck-HIRES radial velocities yield the radius and mass of the planet around this F8IV subgiant host star. The planet has a radius R_P = 1.419 R_J and a mass M_P = 0.60 M_J, yielding a density of 0.26 g cm^(–3), one of the lowest planetary densities known. The orbital period is P = 3.523 days and the orbital semimajor axis is 0.0483^(+0.0006) _(–0.0012) AU. The star has a large rotational vsin i of 10.5 ± 0.7 km s^(–1) and is relatively faint (V ≈ 13.89 mag); both properties are deleterious to precise Doppler measurements. The velocities are indeed noisy, with scatter of 30 m s^(–1), but exhibit a period and phase that are consistent with those implied by transit photometry. We securely detect the R-M effect, confirming the planets existence and establishing its orbit as prograde. We measure an inclination between the projected planetary orbital axis and the projected stellar rotation axis of λ = –26o.4 ± 10o.1, indicating a significant inclination of the planetary orbit. R-M measurements of a large sample of transiting planets from Kepler will provide a statistically robust measure of the true distribution of spin-orbit orientations for hot Jupiters around F and early G stars.


The Astrophysical Journal | 2011

AN ASTEROSEISMIC MEMBERSHIP STUDY OF THE RED GIANTS IN THREE OPEN CLUSTERS OBSERVED BY KEPLER: NGC 6791, NGC 6819, AND NGC 6811

D. Stello; Soren Meibom; Ronald L. Gilliland; F. Grundahl; S. Hekker; Benoit Mosser; T. Kallinger; S. Mathur; R. A. García; Daniel Huber; Sarbani Basu; Timothy R. Bedding; K. Brogaard; W. J. Chaplin; Y. Elsworth; J. Molenda-Żakowicz; R. Szabó; Martin Still; Jon M. Jenkins; Jørgen Christensen-Dalsgaard; Hans Kjeldsen; Aldo M. Serenelli; Bill Wohler

Studying star clusters offers significant advances in stellar astrophysics due to the combined power of having many stars with essentially the same distance, age, and initial composition. This makes clusters excellent test benches for verification of stellar evolution theory. To fully exploit this potential, it is vital that the star sample is uncontaminated by stars that are not members of the cluster. Techniques for determining cluster membership therefore play a key role in the investigation of clusters. We present results on three clusters in the Kepler field of view based on a newly established technique that uses asteroseismology to identify fore- or background stars in the field, which demonstrates advantages over classical methods such as kinematic and photometry measurements. Four previously identified seismic non-members in NGC 6819 are confirmed in this study, and three additional non-members are found—two in NGC 6819 and one in NGC 6791. We further highlight which stars are, or might be, affected by blending, which needs to be taken into account when analyzing these Kepler data.


The Astrophysical Journal | 2012

Transit Timing Observations from Kepler. II. Confirmation of Two Multiplanet Systems via a Non-parametric Correlation Analysis

Eric B. Ford; Daniel C. Fabrycky; Jason H. Steffen; Joshua A. Carter; Francois Fressin; Matthew J. Holman; Jack J. Lissauer; Althea V. Moorhead; Robert C. Morehead; Darin Ragozzine; Jason F. Rowe; William F. Welsh; Christopher Allen; Natalie M. Batalha; William J. Borucki; Stephen T. Bryson; Lars A. Buchhave; Christopher J. Burke; Douglas A. Caldwell; David Charbonneau; Bruce D. Clarke; William D. Cochran; J.-M. Desert; Michael Endl; Mark E. Everett; Debra A. Fischer; Thomas N. Gautier; R. L. Gilliland; Jon M. Jenkins; Michael R. Haas

We present a new method for confirming transiting planets based on the combination of transit timing variations (TTVs) and dynamical stability. Correlated TTVs provide evidence that the pair of bodies is in the same physical system. Orbital stability provides upper limits for the masses of the transiting companions that are in the planetary regime. This paper describes a non-parametric technique for quantifying the statistical significance of TTVs based on the correlation of two TTV data sets. We apply this method to an analysis of the TTVs of two stars with multiple transiting planet candidates identified by Kepler. We confirm four transiting planets in two multiple-planet systems based on their TTVs and the constraints imposed by dynamical stability. An additional three candidates in these same systems are not confirmed as planets, but are likely to be validated as real planets once further observations and analyses are possible. If all were confirmed, these systems would be near 4:6:9 and 2:4:6:9 period commensurabilities. Our results demonstrate that TTVs provide a powerful tool for confirming transiting planets, including low-mass planets and planets around faint stars for which Doppler follow-up is not practical with existing facilities. Continued Kepler observations will dramatically improve the constraints on the planet masses and orbits and provide sensitivity for detecting additional non-transiting planets. If Kepler observations were extended to eight years, then a similar analysis could likely confirm systems with multiple closely spaced, small transiting planets in or near the habitable zone of solar-type stars.


Astrophysical Journal Supplement Series | 2012

DETECTION OF POTENTIAL TRANSIT SIGNALS IN THE FIRST THREE QUARTERS OF Kepler MISSION DATA

Peter Tenenbaum; Jon M. Jenkins; Shawn E. Seader; Christopher J. Burke; Jessie L. Christiansen; Jason F. Rowe; Douglas A. Caldwell; Bruce D. Clarke; Jie Li; Elisa V. Quintana; Jeffrey C. Smith; Susan E. Thompson; Joseph D. Twicken; William J. Borucki; Natalie M. Batalha; Miles T. Cote; Michael R. Haas; Roger C. Hunter; Dwight T. Sanderfer; Forrest R. Girouard; Jennifer R. Hall; Khadeejah A. Ibrahim; Todd C. Klaus; Sean McCauliff; Christopher K. Middour; Anima Sabale; Akm Kamal Uddin; Bill Wohler; Martin Still

We present the results of a search for potential transit signals in the first three quarters of photometry data acquired by the Kepler mission. The targets of the search include 151,722 stars which were observed over the full interval and an additional 19,132 stars which were observed for only one or two quarters. From this set of targets we find a total of 5392 detections which meet the Kepler detection criteria: those criteria are periodicity of signal, an acceptable signal-to-noise ratio, and a composition test which rejects spurious detections which contain non-physical combinations of events. The detected signals are dominated by events with relatively low signal-to-noise ratio and by events with relatively short periods. The distribution of estimated transit depths appears to peak in the range between 40 and 100 parts per million, with a few detections down to fewer than 10 parts per million. The detections exhibit signal-to-noise ratios from 7.1σ, which is the lower cutoff for detections, to over 10,000σ, and periods ranging from 0.5 days, which is the lower cutoff used in the procedure, to 109 days, which is the upper limit of achievable periods given the length of the data set and the criteria used for detections. The detected signals are compared to a set of known transit events in the Kepler field of view which were derived by a different method using a longer data interval; the comparison shows that the current search correctly identified 88.1% of the known events. A tabulation of the detected transit signals, examples which illustrate the analysis and detection process, a discussion of future plans and open, potentially fruitful, areas of further research are included.


Proceedings of SPIE | 2010

Data validation in the Kepler Science Operations Center pipeline

Hayley Wu; Joseph D. Twicken; Peter Tenenbaum; Bruce D. Clarke; Jie Li; Elisa V. Quintana; Christopher Allen; Hema Chandrasekaran; Jon M. Jenkins; Douglas A. Caldwell; Bill Wohler; Forrest R. Girouard; Sean McCauliff; Miles T. Cote; Todd C. Klaus

We present an overview of the Data Validation (DV) software component and its context within the Kepler Science Operations Center (SOC) pipeline and overall Kepler Science mission. The SOC pipeline performs a transiting planet search on the corrected light curves for over 150,000 targets across the focal plane array. We discuss the DV strategy for automated validation of Threshold Crossing Events (TCEs) generated in the transiting planet search. For each TCE, a transiting planet model is fitted to the target light curve. A multiple planet search is conducted by repeating the transiting planet search on the residual light curve after the model flux has been removed; if an additional detection occurs, a planet model is fitted to the new TCE. A suite of automated tests are performed after all planet candidates have been identified. We describe a centroid motion test to determine the significance of the motion of the target photocenter during transit and to estimate the coordinates of the transit source within the photometric aperture; a series of eclipsing binary discrimination tests on the parameters of the planet model fits to all transits and the sequences of odd and even transits; and a statistical bootstrap to assess the likelihood that the TCE would have been generated purely by chance given the target light curve with all transits removed.


The Astrophysical Journal | 2011

Constructing a One-solar-mass Evolutionary Sequence Using Asteroseismic Data from Kepler

V. Silva Aguirre; W. J. Chaplin; J. Ballot; Sarbani Basu; Timothy R. Bedding; Aldo M. Serenelli; G. A. Verner; A. Miglio; M. J. P. F. G. Monteiro; A. Weiss; T. Appourchaux; Alfio Bonanno; Anne-Marie Broomhall; H. Bruntt; T. L. Campante; Luca Casagrande; E. Corsaro; Y. Elsworth; R. A. García; P. Gaulme; R. Handberg; S. Hekker; D. Huber; C. Karoff; S. Mathur; B. Mosser; D. Salabert; Ralph Schönrich; S. G. Sousa; D. Stello

Asteroseismology of solar-type stars has entered a new era of large surveys with the success of the NASA Kepler mission, which is providing exquisite data on oscillations of stars across the Hertzsprung-Russell diagram. From the time-series photometry, the two seismic parameters that can be most readily extracted are the large frequency separation (Δν) and the frequency of maximum oscillation power (νmax). After the survey phase, these quantities are available for hundreds of solar-type stars. By scaling from solar values, we use these two asteroseismic observables to identify for the first time an evolutionary sequence of 1 M ☉ field stars, without the need for further information from stellar models. Comparison of our determinations with the few available spectroscopic results shows an excellent level of agreement. We discuss the potential of the method for differential analysis throughout the main-sequence evolution and the possibility of detecting twins of very well-known stars.

Collaboration


Dive into the Bill Wohler's collaboration.

Top Co-Authors

Avatar

Jon M. Jenkins

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jie Li

Ames Research Center

View shared research outputs
Top Co-Authors

Avatar

Todd C. Klaus

Search for extraterrestrial intelligence

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Elisa V. Quintana

Goddard Space Flight Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge