Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Bin-Na Lee is active.

Publication


Featured researches published by Bin-Na Lee.


Journal of Endodontics | 2011

Improvement of the Properties of Mineral Trioxide Aggregate by Mixing with Hydration Accelerators

Bin-Na Lee; Yun-Chan Hwang; Ji-Hyun Jang; Hoon-Sang Chang; In-Nam Hwang; So-Young Yang; Yeong-Joon Park; Ho-Hyun Son; Won-Mann Oh

INTRODUCTION Mineral trioxide aggregate (MTA) is used widely in endodontic therapy. This study examined the setting time, compressive strength, and pH of MTA mixed with several hydration accelerators (calcium chloride, low-dose citric acid, calcium lactate gluconate solution). METHODS Group 1 (control) was obtained by mixing MTA with distilled water. In group 2, MTA containing 10% calcium chloride was mixed with distilled water. In group 3, MTA was mixed with 0.1% citric acid. In group 4, MTA was mixed with a calcium lactate gluconate solution. The setting time, compressive strength, and pH were examined. RESULTS The setting time of MTA mixed with hydration accelerators was significantly shorter than that of MTA mixed with water (P < .01). In particular, replacing distilled water with a calcium lactate gluconate solution provided a significant decrease in setting time. The compressive strengths of MTA mixed with hydration accelerators were significantly lower than that of MTA mixed with water (P < .01), but those values increased with time. The pH of MTA mixed with hydration accelerators was significantly lower than that of MTA mixed with water (P < .01) but stable at a high level (pH 11-12). CONCLUSIONS Hydration accelerators improved the setting time of MTA. Nevertheless, more study will be needed to improve MTA without impairing its preexisting advantages.


Journal of Endodontics | 2013

Biocompatibility of Mineral Trioxide Aggregate Mixed with Hydration Accelerators

Ji-Youn Kang; Bin-Na Lee; Hye-Ju Son; Jeong-Tae Koh; Seong-Soo Kang; Ho-Hyun Son; Hoon-Sang Chang; In-Nam Hwang; Yun-Chan Hwang; Won-Mann Oh

INTRODUCTION The aim of this study was to evaluate the biocompatibility of mineral trioxide aggregate mixed with selective hydration accelerators such as calcium chloride (CaCl2), citric acid (CA), and calcium lactate gluconate solution (CLG). METHODS Inductively coupled plasma-atomic emission spectrometry analysis was used to measure calcium ions in the extracts of test materials. The 2,3-bis(2-methoxy-4-nitro-5-sulfophenyl)-5-[(phenylamino)carbonyl]-2H-tetrazolium hydroxide assay was performed using MG-63 cells to examine the cytotoxicity of the test materials. The surface of each sample and the growth pattern of the attached cells were observed using scanning electron microscopy (SEM). RESULTS MTA mixed with 10 wt% CaCl2 and MTA mixed with 43.4 wt% CLG released a higher amount of calcium ions than the other groups. The 2,3-bis(2-methoxy-4-nitro-5-sulfophenyl)-5-[(phenylamino)carbonyl]-2H-tetrazolium hydroxide assay revealed that the cell viability of MTA mixed with 0.1 wt% CA was significantly higher than pure MTA on 7-day extract (P < .05). MTA mixed with 43.4 wt% CLG showed significantly higher cell viability than the other groups on 1-day extract (P < .05). MTA mixed with 10 wt% CaCl2 in all groups showed the lowest cell viability at all time points (P < .05). Under SEM, elongated and confluent cells were observed in all samples except in samples of MTA mixed with 10 wt% CaCl2. CONCLUSIONS MTA mixed with 0.1 wt% CA showed good biocompatibility. MTA mixed with 43.4 wt% CLG showed favorable biocompatibility on 1 day. MTA mixed with 10 wt% CaCl2 in all groups showed the lowest cell viability at every time point and poor cell attachment under SEM.


Journal of Endodontics | 2012

Cytotoxicity of newly developed ortho MTA root-end filling materials.

Bin-Na Lee; Hye-Ju Son; Han-Jin Noh; Jeong-Tae Koh; Hoon-Sang Chang; In-Nam Hwang; Yun-Chan Hwang; Won-Mann Oh

INTRODUCTION Various materials have been advocated for use as root-end filling materials. The purpose of the present in vitro study was to compare the cytotoxicity of 4 root-end filling materials: glass ionomer cement (GIC; Fuji II, GC Corp, Tokyo, Japan), reinforced zinc oxide-eugenol cement (IRM; Dentsply Tulsa Dental, Tulsa, OK), and 2 types of mineral trioxide aggregate. METHODS This study used MG-63 cells derived from a human osteosarcoma. To quantitatively evaluate the cytotoxicity of test materials, the 2,3-bis-(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide (XTT) assay was used. The cells were exposed to the extracts and incubated. Cell viability was recorded by measuring the optical density of each test well in reference to controls. Each specimen was examined by scanning electron microscopy for the observation of cell morphology. RESULTS The XTT assay showed that the cell viability of ProRoot MTA (Dentsply Tulsa Dental) was higher than that of GIC and Ortho MTA (BioMTA, Seoul, Republic of Korea) at all time points. IRM showed significantly lower cell viability than the other groups. The scanning electron microscopic analysis revealed that elongated, dense, and almost confluent cells were observed in the cultures of GIC, Ortho MTA, and ProRoot MTA specimens. In contrast, cells on the surface of IRM were rounded in shape, and the numbers and the density of the cells were smaller than that in the other groups. CONCLUSIONS ProRoot MTA and GIC showed good biocompatibility in this study. However, Ortho MTA showed lower biocompatibility compared with ProRoot MTA and GIC.


International Endodontic Journal | 2015

Effect of Biodentine and Bioaggregate on odontoblastic differentiation via mitogen-activated protein kinase pathway in human dental pulp cells.

Ji-Yeon Jung; S.-M. Woo; Bin-Na Lee; Jeong-Tae Koh; Jacques E. Nör; Yun Chan Hwang

AIM To compare the mineralization inductive capacity of Biodentine and Bioaggregate with Mineral trioxide aggregate (MTA) and to investigate possible signaling pathways of mineralization in human dental pulp cells (HDPCs). METHODOLOGY Viability of HDPCs in response to Biodentine, Bioaggregate, and MTA was measured using 3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyltetrazolium bromide. To investigate their potential to induce odontoblast differentiation, expression of dentine sialophosphoprotein (DSPP) and dentine matrix protein1 (DMP1) mRNA level was evaluated by RT-PCR. For the mineralized nodule assay, Alizarin red staining was performed. To determine the role of MAPK signaling in the odontoblastic differentiation of HDPCs, activated MAPKs were investigated by Western blot and the effect of MAPK inhibitor was examined by Alizarin red S staining. The results were statistically analysed using one-way anova and the Bonferroni test. RESULTS The effects of MTA, Biodentine, and Bioaggregate on cell viability were similar. Biodentine and Bioaggregate enhanced DSPP and DMP1 mRNA expression compared to the control group, but to the same extent as MTA (P < 0.05). MTA, Biodentine, and Bioaggregate increased the area of calcified nodules compared to the control (P < 0.01). MTA, Biodentine, and Bioaggregate increased phosphorylation of extracellular signal-regulated kinase (ERK), p38, and c-Jun N-terminal kinase (JNK). MAPK inhibitors attenuated mineralized nodule formation, which was increased by MTA, Biodentine, and Bioaggregate, respectively (P < 0.01). CONCLUSION Biodentine and Bioaggregate stimulated odontoblastic differentiation and mineralization nodule formation by activating the MAPK pathway as did MTA. This suggests that the new materials could be useful for regenerative endodontic procedures.


Restorative Dentistry and Endodontics | 2014

Cytotoxicity and physical properties of tricalcium silicate-based endodontic materials

Young-Eun Jang; Bin-Na Lee; Jeong-Tae Koh; Yeong-Joon Park; Nam Eok Joo; Hoon-Sang Chang; In-Nam Hwang; Won-Mann Oh; Yun-Chan Hwang

Objectives The aim of this study was to evaluate the cytotoxicity, setting time and compressive strength of MTA and two novel tricalcium silicate-based endodontic materials, Bioaggregate (BA) and Biodentine (BD). Materials and Methods Cytotoxicity was evaluated by using a 2,3-bis(2-methoxy-4-nitro-5-sulfophenyl)-5-((phenylamino)carbonyl)-2H-tetrazolium hydroxide (XTT) assay. Measurements of 9 heavy metals (arsenic, cadmium, chromium, copper, iron, lead, manganese, nickel, and zinc) were performed by inductively coupled plasma-mass spectrometry (ICP-MS) of leachates obtained by soaking the materials in distilled water. Setting time and compressive strength tests were performed following ISO requirements. Results BA had comparable cell viability to MTA, whereas the cell viability of BD was significantly lower than that of MTA. The ICP-MS analysis revealed that BD released significantly higher amount of 5 heavy metals (arsenic, copper, iron, manganese, and zinc) than MTA and BA. The setting time of BD was significantly shorter than that of MTA and BA, and the compressive strength of BA was significantly lower than that of MTA and BD. Conclusions BA and BD were biocompatible, and they did not show any cytotoxic effects on human periodontal ligament fibroblasts. BA showed comparable cytotoxicity to MTA but inferior physical properties. BD had somewhat higher cytotoxicity but superior physical properties than MTA.


Restorative Dentistry and Endodontics | 2015

A review of the regenerative endodontic treatment procedure

Bin-Na Lee; Jong-Wook Moon; Hoon-Sang Chang; In-Nam Hwang; Won-Mann Oh; Yun-Chan Hwang

Traditionally, apexification has been used to treat immature permanent teeth that have lost pulp vitality. This technique promotes the formation of an apical barrier to close the open apex so that the filling materials can be confined to the root canal. Because tissue regeneration cannot be achieved with apexification, a new technique called regenerative endodontic treatment was presented recently to treat immature permanent teeth. Regenerative endodontic treatment is a treatment procedure designed to replace damaged pulp tissue with viable tissue which restores the normal function of the pulp-dentin structure. After regenerative endodontic treatment, continued root development and hard tissue deposition on the dentinal wall can occur under ideal circumstances. However, it is difficult to predict the result of regenerative endodontic treatment. Therefore, the purpose of this study was to summarize multiple factors effects on the result of regenerative endodontic treatment in order to achieve more predictable results. In this study, we investigated the features of regenerative endodontic treatment in comparison with those of other pulp treatment procedures and analyzed the factors that have an effect on regenerative endodontic treatment.


Journal of Endodontics | 2014

Effects of Mineral Trioxide Aggregate Mixed with Hydration Accelerators on Osteoblastic Differentiation

Bin-Na Lee; Hye-Joung Kim; Hoon-Sang Chang; In-Nam Hwang; Won-Mann Oh; J.H. Kim; Jeong-Tae Koh; Kyung-San Min; Choong-Ho Choi; Yun-Chan Hwang

INTRODUCTION Despite good physical and biological properties, mineral trioxide aggregate (MTA) has a long setting time. A hydration accelerator could decrease the setting time of MTA. This study assessed the biocompatibility of MTA mixed with hydration accelerators (calcium chloride and low-dose citric acid) and investigated the effect of these materials on osteoblast differentiation. METHODS Cell viability was evaluated by the EZ-Cytox assay kit (Daeil Lab Service, Seoul, Korea). The gene expressions of osteocalcin and bone sialoprotein were detected by reverse-transcription polymerase chain reaction and real-time polymerase chain reaction. The mineralization behavior was evaluated with alizarin red staining. RESULTS There was no statistically significant difference in cell viability between experimental groups. The messenger RNA level of osteogenic genes significantly increased in MTA mixed with hydration accelerators compared with the control and MTA mixed with water. MTA mixed with the hydration accelerators resulted in similar mineralization compared with MTA mixed with water. CONCLUSIONS Hydration accelerators increase the osteogenic effect and show a similar effect on the mineralization of MTA, which may have clinical applications.


Restorative Dentistry and Endodontics | 2016

Evaluation of reparative dentin formation of ProRoot MTA, Biodentine and BioAggregate using micro-CT and immunohistochemistry

Jia Kim; Young-Sang Song; Kyung-San Min; Sun-Hun Kim; Jeong-Tae Koh; Bin-Na Lee; Hoon-Sang Chang; In-Nam Hwang; Won-Mann Oh; Yun-Chan Hwang

Objectives The purpose of this study was to assess the ability of two new calcium silicate-based pulp-capping materials (Biodentine and BioAggregate) to induce healing in a rat pulp injury model and to compare them with mineral trioxide aggregate (MTA). Materials and Methods Eighteen rats were anesthetized, cavities were prepared and the pulp was capped with either of ProRoot MTA, Biodentine, or BioAggregate. The specimens were scanned using a high-resolution micro-computed tomography (micro-CT) system and were prepared and evaluated histologically and immunohistochemically using dentin sialoprotein (DSP). Results On micro-CT analysis, the ProRoot MTA and Biodentine groups showed significantly thicker hard tissue formation (p < 0.05). On H&E staining, ProRoot MTA showed complete dentin bridge formation with normal pulpal histology. In the Biodentine and BioAggregate groups, a thick, homogeneous hard tissue barrier was observed. The ProRoot MTA specimens showed strong immunopositive reaction for DSP. Conclusions Our results suggest that calcium silicate-based pulp-capping materials induce favorable effects on reparative processes during vital pulp therapy and that both Biodentine and BioAggregate could be considered as alternatives to ProRoot MTA.


Journal of Applied Oral Science | 2013

Thermal analysis of bulk filled composite resin polymerization using various light curing modes according to the curing depth and approximation to the cavity wall

Hoon-Sang Chang; Kyu-Jeong Cho; Su-Jung Park; Bin-Na Lee; Yun-Chan Hwang; Won-Mann Oh; In-Nam Hwang

OBJECTIVE The purpose of this study was to investigate the polymerization temperature of a bulk filled composite resin light-activated with various light curing modes using infrared thermography according to the curing depth and approximation to the cavity wall. MATERIAL AND METHODS Composite resin (AeliteFlo, Bisco, Schaumburg, IL, USA) was inserted into a Class II cavity prepared in the Teflon blocks and was cured with a LED light curing unit (Drs Light, GoodDoctors Co., Seoul, Korea) using various light curing modes for 20 s. Polymerization temperature was measured with an infrared thermographic camera (Thermovision 900 SW/TE, Agema Infra-red Systems AB, Danderyd, Sweden) for 40 s at measurement spots adjacent to the cavity wall and in the middle of the cavity from the surface to a 4 mm depth. Data were analyzed according to the light curing modes with one-way ANOVA, and according to curing depth and approximation to the cavity wall with two-way ANOVA. RESULTS The peak polymerization temperature of the composite resin was not affected by the light curing modes. According to the curing depth, the peak polymerization temperature at the depth of 1 mm to 3 mm was significantly higher than that at the depth of 4 mm, and on the surface. The peak polymerization temperature of the spots in the middle of the cavity was higher than that measured in spots adjacent to the cavity wall. CONCLUSION In the photopolymerization of the composite resin, the temperature was higher in the middle of the cavity compared to the outer surface or at the internal walls of the prepared cavity.


Restorative Dentistry and Endodontics | 2015

Changes in SIRT gene expression during odontoblastic differentiation of human dental pulp cells

Young-Eun Jang; Su-Hee Go; Bin-Na Lee; Hoon-Sang Chang; In-Nam Hwang; Won-Mann Oh; Yun-Chan Hwang

Objectives The aim of this study was to investigate the expression of 7 different sirtuin genes (SIRT1-SIRT7) in human dental pulp cells (HDPCs), and to determine the role of SIRTs in the odontoblastic differentiation potential of HDPCs. Materials and Methods HDPCs were isolated from freshly extracted third molar teeth of healthy patients and cultulred in odontoblastic differentiation inducing media. Osteocalcin (OCN) and dentin sialophosphoprotein (DSPP) expression was analyzed to evaluate the odontoblastic differentiation of HDPCs by reverse transcription-polymerase chain reaction (RT-PCR), while alizarin red staining was used for the mineralization assay. To investigate the expression of SIRTs during odontoblastic differentiation of HDPCs, real time PCR was also performed with RT-PCR. Results During the culture of HDPCs in the differentiation inducing media, OCN, and DSPP mRNA expressions were increased. Mineralized nodule formation was also increased in the 14 days culture. All seven SIRT genes were expressed during the odontogenic induction period. SIRT4 expression was increased in a time-dependent manner. Conclusions Our study identified the expression of seven different SIRT genes in HDPCs, and revealed that SIRT4 could exert an influence on the odontoblast differentiation process. Further studies are needed to determine the effects of other SIRTs on the odontogenic potential of HDPCs.

Collaboration


Dive into the Bin-Na Lee's collaboration.

Top Co-Authors

Avatar

Won-Mann Oh

Chonnam National University

View shared research outputs
Top Co-Authors

Avatar

Yun-Chan Hwang

Chonnam National University

View shared research outputs
Top Co-Authors

Avatar

Hoon-Sang Chang

Chonnam National University

View shared research outputs
Top Co-Authors

Avatar

In-Nam Hwang

Chonnam National University

View shared research outputs
Top Co-Authors

Avatar

Jeong-Tae Koh

Chonnam National University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kyung-San Min

Chonbuk National University

View shared research outputs
Top Co-Authors

Avatar

Ho-Hyun Son

Seoul National University

View shared research outputs
Top Co-Authors

Avatar

Ji-Yeon Jung

Chonnam National University

View shared research outputs
Top Co-Authors

Avatar

Yeong-Joon Park

Chonnam National University

View shared research outputs
Researchain Logo
Decentralizing Knowledge