Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Bingxing Zhang is active.

Publication


Featured researches published by Bingxing Zhang.


RSC Advances | 2015

Solvent determines the formation and properties of metal–organic frameworks

Bingxing Zhang; Jianling Zhang; Chengcheng Liu; Xinxin Sang; Li Peng; Xue Ma; Tianbin Wu; Buxing Han; Guanying Yang

The formation of a water-sensitive metal–organic framework (MOF), Cu3(BTC)2 (BTC = 1,3,5-benzenetricarboxylate), in a water/ethanol solvent system was studied systematically. The X-ray diffraction results prove that the MOF cannot form in pure water or in a water/ethanol mixture with a small amount of ethanol. As the ethanol content exceeds 30 vol%, a crystalline MOF can be obtained. The scanning electron microscope images of the as-synthesized MOFs show the formation of MOF nanoparticles with an average size of 20–300 nm. The MOF particle size decreased with increasing ethanol content in the mixed solvent. The FT-IR spectra further support that the MOF formation occurs in water/ethanol mixtures with ethanol volume ratios higher than 30 vol%. Thermogravimetric analysis showed that the MOF is stable up to 300 °C. Moreover, the FT-IR spectra and thermogravimetric analysis gave consistent information on the solvent amount entrapped in the MOF pores. The porosity of the MOFs was determined using a N2 adsorption–desorption method. When the ethanol volume ratio reached 75%, the largest SBET value of 1067 m2 g−1 and Vt value of 0.52 cm3 g−1 were obtained. The possible mechanism for MOF formation in water/ethanol solvent systems and the dependence of the MOF size on the solvent composition was discussed from the view of hydrogen bond strength between solvent molecules and the ligands in different water/ethanol solvent systems.


Scientific Reports | 2016

High-internal-phase emulsions stabilized by metal-organic frameworks and derivation of ultralight metal-organic aerogels

Bingxing Zhang; Jianling Zhang; Chengcheng Liu; Li Peng; Xinxin Sang; Buxing Han; Xue Ma; Tian Luo; Xiuniang Tan; Guanying Yang

To design high-internal-phase emulsion (HIPE) systems is of great interest from the viewpoints of both fundamental researches and practical applications. Here we demonstrate for the first time the utilization of metal-organic framework (MOF) for HIPE formation. By stirring the mixture of water, oil and MOF at room temperature, the HIPE stabilized by the assembly of MOF nanocrystals at oil-water interface could be formed. The MOF-stabilized HIPE provides a novel route to produce highly porous metal-organic aerogel (MOA) monolith. After removing the liquids from the MOF-stabilized HIPE, the ultralight MOA with density as low as 0.01 g·cm−3 was obtained. The HIPE approach for MOA formation has unique advantages and is versatile in producing different kinds of ultralight MOAs with tunable porosities and structures.


Scientific Reports | 2016

Cellular graphene aerogel combines ultralow weight and high mechanical strength: A highly efficient reactor for catalytic hydrogenation.

Bingxing Zhang; Jianling Zhang; Xinxin Sang; Chengcheng Liu; Tian Luo; Li Peng; Buxing Han; Xiuniang Tan; Xue Ma; Dong Wang; Ning Zhao

The construction of three-dimensional graphene aerogels (GAs) is of great importance owing to their outstanding properties for various applications. Up to now, the combination of ultralow weight and super mechanical strength for GA remains a great challenge. Here we demonstrate the fabrication of cellular GAs by a facile, easily controlled and versatile route, i.e. the chemical reduction of graphene oxide assemblies at oil-water interface under a mild condition (70 °C). The GA is ultralight (with density <3 mg cm−3) yet mechanically resilient because the walls of the cell closely pack in a highly ordered manner to maximize mechanical strength. The GA has been utilized as an appealing reactor for catalytic hydrogenation, which exhibited great advantages such as large oil absorption capability, exceptional catalytic activity, ease of product separation and high stability.


Chemistry-an Asian Journal | 2016

Assembling metal‐organic frameworks in ionic liquids and supercritical CO2

Bingxing Zhang; Jianling Zhang; Buxing Han

Ionic liquids (ILs) and supercritical carbon dioxide (scCO2 ) are both considered to be green solvents with tunable properties. Recently, studies of the synthesis of metal-organic frameworks (MOFs) in the presence of ILs and scCO2 has become a burgeoning direction in chemistry and materials science. ILs have been shown to be ideal media for the synthesis of a variety of MOFs owing to their unique properties including the ability to dissolve a wide range of organic and inorganic compounds and flexible designability. scCO2 has adjustable solvent power and excellent mass-transfer characteristics that offer the opportunity to replace organic solvents for MOF activation, MOF aerogel synthesis, and MOF construction. More interestingly, the simultaneous utilization of IL and scCO2 can combine the advantages of the two liquids, which provides novel routes for the fabrication of MOF structures. This review describes the advances in MOF synthesis in ILs, scCO2 , and IL/scCO2 systems.


RSC Advances | 2015

Room-temperature synthesis of mesoporous CuO and its catalytic activity for cyclohexene oxidation

Xinxin Sang; Jianling Zhang; Tianbin Wu; Bingxing Zhang; Xue Ma; Li Peng; Buxing Han; Xinchen Kang; Chengcheng Liu; Guanying Yang

CuO nanoleaves with a mesoporous structure were formed in an aqueous solution of triethylamine at room temperature. The growth process of the CuO nanoleaves in a triethylamine solution was investigated by varying the reaction time. It is shown that the CuO nanostructures form by reconstructive transformation from Cu(OH)2, going through a 0D nanoparticle → 1D nanowire → 2D nanoleaf dimensional transition process. The mechanism for the amine-induced formation of CuO at room temperature was studied by using different aliphatic amines. It is revealed that the amines play multiple roles on CuO formation, i.e. acting as an alkali, dominating the Cu(OH)2 to CuO transformation, and directing the oriented crystal growth of CuO. This route is simple, rapid, involves no additional alkalis or directing agents, and can proceed at room temperature. The as synthesized CuO exhibits excellent catalytic activity for cyclohexene oxidation with oxygen under solvent-free conditions.


Nature Communications | 2017

Ionic liquid accelerates the crystallization of Zr-based metal–organic frameworks

Xinxin Sang; Jianling Zhang; Junfeng Xiang; Jie Cui; Lirong Zheng; Jing Zhang; Zhonghua Wu; Zhihong Li; Guang Mo; Yuan Xu; Jinliang Song; Chengcheng Liu; Xiuniang Tan; Tian Luo; Bingxing Zhang; Buxing Han

The Zr-based metal–organic frameworks are generally prepared by solvothermal procedure. To overcome the slow kinetics of nucleation and crystallization of Zr-based metal–organic frameworks is of great interest and challenging. Here, we find that an ionic liquid as solvent can significantly accelerate the formation of Zr-based metal–organic frameworks at room temperature. For example, the reaction time is shortened to 0.5 h in 1-hexyl-3-methylimidazolium chloride for Zr-based metal–organic framework formation, while that in the conventional solvent N,N-dimethylformamide needs at least 120 h. The reaction mechanism was investigated in situ by 1H nuclear magnetic resonance, spectroscopy synchrotron small angle X-ray scattering and X-ray absorption fine structure. This rapid, low-energy, and facile route produces Zr-based metal–organic framework nanoparticles with small particle size, missing-linker defects and large surface area, which can be used as heterogeneous catalysts for Meerwein–Ponndorf–Verley reaction.Crystallization kinetics of metal-organic frameworks in conventional organic solvents are usually very slow. Here, the authors show that an ionic liquid medium accelerates considerably the formation of Zr-based metal-organic frameworks that are active catalysts in the Meerwein-Ponndorf-Verley reaction.


Chemistry-an Asian Journal | 2018

Solvent Impedes CO2 Cycloaddition on Metal-Organic Frameworks

Dan Shao; Jinbiao Shi; Jianling Zhang; Xiuniang Tan; Tian Luo; Xiuyan Cheng; Bingxing Zhang; Buxing Han

The catalytic performance of metal-organic frameworks (MOFs) for the synthesis of cyclic carbonate from carbon dioxide and epoxides has been explored under solvent and solvent-free conditions, respectively. It was found that MOF catalysts have significantly improved catalytic activities in solvent-free CO2 cycloaddition reactions than those in solvent. The mechanism was discussed with regard to the competition of solvent with substrate to adhere MOF catalysts during the reaction process.


ACS Applied Materials & Interfaces | 2017

CO2/Water Emulsions Stabilized by Partially Reduced Graphene Oxide

Chengcheng Liu; Jianling Zhang; Xinxin Sang; Xinchen Kang; Bingxing Zhang; Tian Luo; Xiuniang Tan; Buxing Han; Lirong Zheng; Jing Zhang

Using functional materials to stabilize emulsions of carbon dioxide (CO2) and water is a promising way to expand the utility of CO2 and functional materials. Here we demonstrate for the first time that the partially reduced graphene oxide (rGO) can well stabilize the emulsion of CO2 and water without the aid of any additional emulsifier or surface modification for rGO. More interestingly, such a novel kind of emulsion provides a facile and versatile route for constructing highly porous three-dimensional rGO materials, including rGO, metal/rGO, and metal oxide/rGO networks. The as-synthesized Au/rGO composite is highly active in catalyzing 4-nitrophenol reduction and styrene epoxidation.


Chemcatchem | 2018

Ultrathin and Porous Carbon Nanosheet Supporting Bimetallic Nanoparticles for High Performance Electrocatalysis

Jianling Zhang; Bingxing Zhang; Xiansen Tao; Qingqing Mei; Lirong Zheng; Jing Zhang; Xiuniang Tan; Chengcheng Liu; Tian Luo; Xiuyan Cheng; Jinbiao Shi; Dan Shao; Xiaofu Sun; Qinggong Zhu; Li Zhang; Buxing Han

Developing hybrid carbon materials with unique micro/nanostructured and multicomponent features is of great importance in catalysis, energy storage, and energy conversion. Herein, we demonstrate the formation of a novel kind of hybrid carbon material, that is, bimetallic nanoparticles supported by ultrathin (≈5.5 nm) and porous carbon nanosheets, by the pyrolysis of preformed bimetallic metal–organic framework nanosheets. This hybrid carbon nanostructure combines the advantages of highly exposed nanoparticles that are readily accessible to the reactant, multiple active sites such as metal–metal and metal–nitrogen sites and ultrathin carbon layers, and highly efficient electron transport. Owing to these unique features, the bimetallic carbon nanosheets exhibit excellent electrocatalytic performance for the oxygen reduction reaction.


Green Chemistry | 2018

Carbon dioxide droplets stabilized by g-C3N4

Lifei Liu; Jianling Zhang; Bingxing Zhang; Jinbiao Shi; Xiuniang Tan; Buxing Han; Tian Luo; Dan Shao; Dongxing Tan; Fanyu Zhang

Here we propose the emulsification of CO2 and water with graphitic carbon nitride (g-C3N4), in which the g-C3N4-stabilized CO2 droplets were utilized as “microreactors” for in situ photocatalytic CO2 reduction. The g-C3N4 sheets assembling at the CO2/water interface can serve both as an emulsifier and photocatalyst, which can greatly promote the conversion of CO2 to formic acid.

Collaboration


Dive into the Bingxing Zhang's collaboration.

Top Co-Authors

Avatar

Buxing Han

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Jianling Zhang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Xiuniang Tan

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Chengcheng Liu

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Jinbiao Shi

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Xinxin Sang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Dan Shao

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Tian Luo

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Guanying Yang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Jing Zhang

Chinese Academy of Sciences

View shared research outputs
Researchain Logo
Decentralizing Knowledge