Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Bipulendu Jena is active.

Publication


Featured researches published by Bipulendu Jena.


Blood | 2013

Donor-derived CD19-targeted T cells cause regression of malignancy persisting after allogeneic hematopoietic stem cell transplantation

James N. Kochenderfer; Mark E. Dudley; Robert O. Carpenter; Sadik H. Kassim; Jeremy J. Rose; William G. Telford; Frances T. Hakim; David Halverson; Daniel H. Fowler; Nancy M. Hardy; Anthony R Mato; Dennis D. Hickstein; Juan Gea-Banacloche; Steven Z. Pavletic; Claude Sportes; Irina Maric; Steven A. Feldman; Brenna Hansen; Jennifer Wilder; Bazetta Blacklock-Schuver; Bipulendu Jena; Michael R. Bishop; Ronald E. Gress; Steven A. Rosenberg

New treatments are needed for B-cell malignancies persisting after allogeneic hematopoietic stem cell transplantation (alloHSCT). We conducted a clinical trial of allogeneic T cells genetically modified to express a chimeric antigen receptor (CAR) targeting the B-cell antigen CD19. T cells for genetic modification were obtained from each patients alloHSCT donor. All patients had malignancy that persisted after alloHSCT and standard donor lymphocyte infusions (DLIs). Patients did not receive chemotherapy prior to the CAR T-cell infusions and were not lymphocyte depleted at the time of the infusions. The 10 treated patients received a single infusion of allogeneic anti-CD19-CAR T cells. Three patients had regressions of their malignancies. One patient with chronic lymphocytic leukemia (CLL) obtained an ongoing complete remission after treatment with allogeneic anti-CD19-CAR T cells, another CLL patient had tumor lysis syndrome as his leukemia dramatically regressed, and a patient with mantle cell lymphoma obtained an ongoing partial remission. None of the 10 patients developed graft-versus-host disease (GVHD). Toxicities included transient hypotension and fever. We detected cells containing the anti-CD19-CAR gene in the blood of 8 of 10 patients. These results show for the first time that donor-derived allogeneic anti-CD19-CAR T cells can cause regression of B-cell malignancies resistant to standard DLIs without causing GVHD.


Journal of Clinical Investigation | 2016

Phase I trials using Sleeping Beauty to generate CD19-specific CAR T cells

Partow Kebriaei; Harjeet Singh; M. Helen Huls; Matthew J. Figliola; Roland L. Bassett; Simon Olivares; Bipulendu Jena; Margaret J. Dawson; Pappanaicken R. Kumaresan; Shihuang Su; Sourindra Maiti; Jianliang Dai; Branden S. Moriarity; Marie Andrée Forget; Vladimir Senyukov; Aaron Orozco; Tingting Liu; Jessica McCarty; Rineka Jackson; Judy S. Moyes; Gabriela Rondon; Muzaffar H. Qazilbash; Stefan O. Ciurea; Amin M. Alousi; Yago Nieto; Katy Rezvani; David Marin; Uday Popat; Chitra Hosing; Elizabeth J. Shpall

BACKGROUND T cells expressing antigen-specific chimeric antigen receptors (CARs) improve outcomes for CD19-expressing B cell malignancies. We evaluated a human application of T cells that were genetically modified using the Sleeping Beauty (SB) transposon/transposase system to express a CD19-specific CAR. METHODS T cells were genetically modified using DNA plasmids from the SB platform to stably express a second-generation CD19-specific CAR and selectively propagated ex vivo with activating and propagating cells (AaPCs) and cytokines. Twenty-six patients with advanced non-Hodgkin lymphoma and acute lymphoblastic leukemia safely underwent hematopoietic stem cell transplantation (HSCT) and infusion of CAR T cells as adjuvant therapy in the autologous (n = 7) or allogeneic settings (n = 19). RESULTS SB-mediated genetic transposition and stimulation resulted in 2,200- to 2,500-fold ex vivo expansion of genetically modified T cells, with 84% CAR expression, and without integration hotspots. Following autologous HSCT, the 30-month progression-free and overall survivals were 83% and 100%, respectively. After allogeneic HSCT, the respective 12-month rates were 53% and 63%. No acute or late toxicities and no exacerbation of graft-versus-host disease were observed. Despite a low antigen burden and unsupportive recipient cytokine environment, CAR T cells persisted for an average of 201 days for autologous recipients and 51 days for allogeneic recipients. CONCLUSIONS CD19-specific CAR T cells generated with SB and AaPC platforms were safe, and may provide additional cancer control as planned infusions after HSCT. These results support further clinical development of this nonviral gene therapy approach. TRIAL REGISTRATION Autologous, NCT00968760; allogeneic, NCT01497184; long-term follow-up, NCT01492036. FUNDING National Cancer Institute, private foundations, and institutional funds. Please see Acknowledgments for details.


PLOS ONE | 2013

Manufacture of Clinical-Grade CD19-Specific T Cells Stably Expressing Chimeric Antigen Receptor Using Sleeping Beauty System and Artificial Antigen Presenting Cells

Harjeet Singh; Matthew J. Figliola; Margaret J. Dawson; Simon Olivares; Ling-ling Zhang; Ge Yang; Sourindra Maiti; Pallavi R. Manuri; Vladimir Senyukov; Bipulendu Jena; Partow Kebriaei; Richard E. Champlin; Helen Huls; Laurence J.N. Cooper

Adoptive transfer of T cells expressing a CD19-specific chimeric antigen receptor (CAR) is being evaluated in multiple clinical trials. Our current approach to adoptive immunotherapy is based on a second generation CAR (designated CD19RCD28) that signals through a CD28 and CD3-ζ endodomain. T cells are electroporated with DNA plasmids from the Sleeping Beauty (SB) transposon/transposase system to express this CAR. Stable integrants of genetically modified T cells can then be retrieved when co-cultured with designer artificial antigen presenting cells (aAPC) in the presence of interleukin (IL)-2 and 21. Here, we reveal how the platform technologies of SB-mediated transposition and CAR-dependent propagation on aAPC were adapted for human application. Indeed, we have initiated clinical trials in patients with high-risk B-lineage malignancies undergoing autologous and allogeneic hematopoietic stem-cell transplantation (HSCT). We describe the process to manufacture clinical grade CD19-specific T cells derived from healthy donors. Three validation runs were completed in compliance with current good manufacturing practice for Phase I/II trials demonstrating that by 28 days of co-culture on γ-irradiated aAPC ∼1010 T cells were produced of which >95% expressed CAR. These genetically modified and propagated T cells met all quality control testing and release criteria in support of infusion.


Human Gene Therapy | 2012

Infusing CD19-directed T cells to augment disease control in patients undergoing autologous hematopoietic stem-cell transplantation for advanced B-lymphoid malignancies

Partow Kebriaei; Helen Huls; Bipulendu Jena; Mark F. Munsell; Rineka Jackson; Dean A. Lee; Perry B. Hackett; Gabriela Rondon; Elizabeth J. Shpall; Richard E. Champlin; Laurence J.N. Cooper

Limited curative treatment options exist for patients with advanced B-lymphoid malignancies, and new therapeutic approaches are needed to augment the efficacy of hematopoietic stem-cell transplantation (HSCT). Cellular therapies, such as adoptive transfer of T cells that are being evaluated to target malignant disease, use mechanisms independent of chemo- and radiotherapy with nonoverlapping toxicities. Gene therapy is employed to generate tumor-specific T cells, as specificity can be redirected through enforced expression of a chimeric antigen receptor (CAR) to achieve antigen recognition based on the specificity of a monoclonal antibody. By combining cell and gene therapies, we have opened a new Phase I protocol at the MD Anderson Cancer Center (Houston, TX) to examine the safety and feasibility of administering autologous genetically modified T cells expressing a CD19-specific CAR (capable of signaling through chimeric CD28 and CD3-ζ) into patients with high-risk B-lymphoid malignancies undergoing autologous HSCT. The T cells are genetically modified by nonviral gene transfer of the Sleeping Beauty system and CAR(+) T cells selectively propagated in a CAR-dependent manner on designer artificial antigen-presenting cells. The results of this study will lay the foundation for future protocols including CAR(+) T-cell infusions derived from allogeneic sources.


PLOS ONE | 2013

Chimeric Antigen Receptor (CAR)-Specific Monoclonal Antibody to Detect CD19-Specific T Cells in Clinical Trials

Bipulendu Jena; Sourindra Maiti; Helen Huls; Harjeet Singh; Dean A. Lee; Richard E. Champlin; Laurence J.N. Cooper

Clinical trials targeting CD19 on B-cell malignancies are underway with encouraging anti-tumor responses. Most infuse T cells genetically modified to express a chimeric antigen receptor (CAR) with specificity derived from the scFv region of a CD19-specific mouse monoclonal antibody (mAb, clone FMC63). We describe a novel anti-idiotype monoclonal antibody (mAb) to detect CD19-specific CAR+ T cells before and after their adoptive transfer. This mouse mAb was generated by immunizing with a cellular vaccine expressing the antigen-recognition domain of FMC63. The specificity of the mAb (clone no. 136.20.1) was confined to the scFv region of the CAR as validated by inhibiting CAR-dependent lysis of CD19+ tumor targets. This clone can be used to detect CD19-specific CAR+ T cells in peripheral blood mononuclear cells at a sensitivity of 1∶1,000. In clinical settings the mAb is used to inform on the immunophenotype and persistence of administered CD19-specific T cells. Thus, our CD19-specific CAR mAb (clone no. 136.20.1) will be useful to investigators implementing CD19-specific CAR+ T cells to treat B-lineage malignancies. The methodology described to develop a CAR-specific anti-idiotypic mAb could be extended to other gene therapy trials targeting different tumor associated antigens in the context of CAR-based adoptive T-cell therapy.


Journal of Clinical Investigation | 2016

CD62L+ NKT cells have prolonged persistence and antitumor activity in vivo

Gengwen Tian; Amy N. Courtney; Bipulendu Jena; Andras Heczey; Daofeng Liu; Ekaterina Marinova; Linjie Guo; Xin Xu; Hiroki Torikai; Qianxing Mo; Gianpietro Dotti; Laurence J.N. Cooper; Leonid S. Metelitsa

Vα24-invariant natural killer T cells (NKTs) localize to tumors and have inherent antitumor properties, making them attractive chimeric antigen receptor (CAR) carriers for redirected cancer immunotherapy. However, clinical application of CAR-NKTs has been impeded, as mechanisms responsible for NKT expansion and the in vivo persistence of these cells are unknown. Here, we demonstrated that antigen-induced expansion of primary NKTs in vitro associates with the accumulation of a CD62L+ subset and exhaustion of CD62L- cells. Only CD62L+ NKTs survived and proliferated in response to secondary stimulation. When transferred to immune-deficient NSG mice, CD62L+ NKTs persisted 5 times longer than CD62L- NKTs. Moreover, CD62L+ cells transduced with a CD19-specific CAR achieved sustained tumor regression in a B cell lymphoma model. Proliferating CD62L+ cells downregulated or maintained CD62L expression when activated via T cell receptor alone or in combination with costimulatory receptors. We generated HLAnull K562 cell clones that were engineered to express CD1d and costimulatory ligands. Clone B-8-2 (HLAnullCD1dmedCD86high4-1BBLmedOX40Lhigh) induced the highest rates of NKT expansion and CD62L expression. B-8-2-expanded CAR-NKTs exhibited prolonged in vivo persistence and superior therapeutic activities in models of lymphoma and neuroblastoma. Therefore, we have identified CD62L as a marker of a distinct NKT subset endowed with high proliferative potential and have developed artificial antigen-presenting cells that generate CD62L-enriched NKTs for effective cancer immunotherapy.


Journal of Immunotherapy | 2014

Universal Artificial Antigen Presenting Cells to Selectively Propagate T Cells Expressing Chimeric Antigen Receptor Independent of Specificity

David Rushworth; Bipulendu Jena; Simon Olivares; Sourindra Maiti; Neima Briggs; Srinivas S. Somanchi; Jianliang Dai; Dean A. Lee; Laurence J.N. Cooper

T cells genetically modified to stably express immunoreceptors are being assessed for therapeutic potential in clinical trials. T cells expressing a chimeric antigen receptor (CAR) are endowed with a new specificity to target tumor-associated antigen (TAA) independent of major histocompatibility complex. Our approach to nonviral gene transfer in T cells uses ex vivo numeric expansion of CAR+ T cells on irradiated artificial antigen presenting cells (aAPC) bearing the targeted TAA. The requirement for aAPC to express a desired TAA limits the human application of CARs with multiple specificities when selective expansion through coculture with feeder cells is sought. As an alternative to expressing individual TAAs on aAPC, we expressed 1 ligand that could activate CAR+ T cells for sustained proliferation independent of specificity. We expressed a CAR ligand (designated CARL) that binds the conserved IgG4 extracellular domain of CAR and demonstrated that CARL+ aAPC propagate CAR+ T cells of multiple specificities. CARL avoids technical issues and costs associated with deploying clinical-grade aAPC for each TAA targeted by a given CAR. Using CARL enables 1 aAPC to numerically expand all CAR+ T cells containing the IgG4 domain, and simplifies expansion, testing, and clinical translation of CAR+ T cells of any specificity.


Blood | 2012

Good T cells for bad B cells

Laurence J.N. Cooper; Bipulendu Jena; Catherine M. Bollard

In this issue of Blood , Kochenderfer and colleagues update their results of a phase 1 trial describing the infusion of autologous T cells rendered specific for CD19.[1][1] Their data build on the safety, feasibility, and efficacy regarding adoptive transfer of genetically modified T cells


Current Hematologic Malignancy Reports | 2014

Driving CAR-Based T-Cell Therapy to Success

Bipulendu Jena; Judy S. Moyes; Helen Huls; Laurence J.N. Cooper

T cells that have been genetically modified, activated, and propagated ex vivo can be infused to control tumor progression in patients who are refractory to conventional treatments. Early-phase clinical trials demonstrate that the tumor-associated antigen (TAA) CD19 can be therapeutically engaged through the enforced expression of a chimeric antigen receptor (CAR) on clinical-grade T cells. Advances in vector design, the architecture of the CAR molecule especially as associated with T-cell co-stimulatory pathways, and understanding of the tumor microenvironment, play significant roles in the successful treatment of medically fragile patients. However, some recipients of CAR+ T cells demonstrate incomplete responses. Understanding the potential for treatment failure provides a pathway to improve the potency of adoptive transfer of CAR+ T cells. High throughput single-cell analyses to understand the complexity of the inoculum coupled with animal models may provide insight into the therapeutic potential of genetically modified T cells. This review focusses on recent advances regarding the human application of CD19-specific CAR+ T cells and explores how their success for hematologic cancers can provide a framework for investigational treatment of solid tumor malignancies.


Current Hematologic Malignancy Reports | 2013

CARs in chronic lymphocytic leukemia - Ready to drive

Chitra Hosing; Partow Kebriaei; William G. Wierda; Bipulendu Jena; Laurence J.N. Cooper; Elizabeth J. Shpall

Adoptive transfer of antigen-specific T cells has been adapted by investigators for treatment of chronic lymphocytic leukemia (CLL). To overcome issues of immune tolerance which limits the endogenous adaptive immune response to tumor-associated antigens (TAAs), robust systems for the genetic modification and characterization of T cells expressing chimeric antigen receptors (CARs) to redirect specificity have been produced. Refinements with regards to persistence and trafficking of the genetically modified T cells are underway to help improve potency. Clinical trials utilizing this technology demonstrate feasibility, and increasingly, these early-phase trials are demonstrating impressive anti-tumor effects, particularly for CLL patients, paving the way for multi-center trials to establish the efficacy of CAR+ T cell therapy.

Collaboration


Dive into the Bipulendu Jena's collaboration.

Top Co-Authors

Avatar

Laurence J.N. Cooper

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Helen Huls

Center for Cell and Gene Therapy

View shared research outputs
Top Co-Authors

Avatar

Richard E. Champlin

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Elizabeth J. Shpall

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Harjeet Singh

City of Hope National Medical Center

View shared research outputs
Top Co-Authors

Avatar

Partow Kebriaei

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Simon Olivares

City of Hope National Medical Center

View shared research outputs
Top Co-Authors

Avatar

Rineka Jackson

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Gabriela Rondon

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Matthew J. Figliola

University of Texas MD Anderson Cancer Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge