Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Helen Huls is active.

Publication


Featured researches published by Helen Huls.


Cancer Research | 2008

Redirecting specificity of T-cell populations for CD19 using the Sleeping Beauty system.

Harjeet Singh; Pallavi R. Manuri; Simon Olivares; Navid Dara; Margaret J. Dawson; Helen Huls; Perry B. Hackett; Donald B. Kohn; Elizabeth J. Shpall; Richard E. Champlin; Laurence J.N. Cooper

Genetic modification of clinical-grade T cells is undertaken to augment function, including redirecting specificity for desired antigen. We and others have introduced a chimeric antigen receptor (CAR) to enable T cells to recognize lineage-specific tumor antigen, such as CD19, and early-phase human trials are currently assessing safety and feasibility. However, a significant barrier to next-generation clinical studies is developing a suitable CAR expression vector capable of genetically modifying a broad population of T cells. Transduction of T cells is relatively efficient but it requires specialized manufacture of expensive clinical grade recombinant virus. Electrotransfer of naked DNA plasmid offers a cost-effective alternative approach, but the inefficiency of transgene integration mandates ex vivo selection under cytocidal concentrations of drug to enforce expression of selection genes to achieve clinically meaningful numbers of CAR(+) T cells. We report a new approach to efficiently generating T cells with redirected specificity, introducing DNA plasmids from the Sleeping Beauty transposon/transposase system to directly express a CD19-specific CAR in memory and effector T cells without drug selection. When coupled with numerical expansion on CD19(+) artificial antigen-presenting cells, this gene transfer method results in rapid outgrowth of CD4(+) and CD8(+) T cells expressing CAR to redirect specificity for CD19(+) tumor cells.


Cancer Research | 2015

Tuning Sensitivity of CAR to EGFR Density Limits Recognition of Normal Tissue While Maintaining Potent Antitumor Activity

Hillary G. Caruso; Lenka V. Hurton; Amer Najjar; David Rushworth; Sonny Ang; Simon Olivares; Tiejuan Mi; Kirsten Switzer; Harjeet Singh; Helen Huls; Dean A. Lee; Amy B. Heimberger; Richard E. Champlin; Laurence J.N. Cooper

Many tumors overexpress tumor-associated antigens relative to normal tissue, such as EGFR. This limits targeting by human T cells modified to express chimeric antigen receptors (CAR) due to potential for deleterious recognition of normal cells. We sought to generate CAR(+) T cells capable of distinguishing malignant from normal cells based on the disparate density of EGFR expression by generating two CARs from monoclonal antibodies that differ in affinity. T cells with low-affinity nimotuzumab-CAR selectively targeted cells overexpressing EGFR, but exhibited diminished effector function as the density of EGFR decreased. In contrast, the activation of T cells bearing high-affinity cetuximab-CAR was not affected by the density of EGFR. In summary, we describe the generation of CARs able to tune T-cell activity to the level of EGFR expression in which a CAR with reduced affinity enabled T cells to distinguish malignant from nonmalignant cells.


Cancer Research | 2011

Reprogramming CD19-Specific T Cells with IL-21 Signaling Can Improve Adoptive Immunotherapy of B-Lineage Malignancies

Harjeet Singh; Matthew J. Figliola; Margaret J. Dawson; Helen Huls; Simon Olivares; Kirsten Switzer; Tiejuan Mi; Sourindra Maiti; Partow Kebriaei; Dean A. Lee; Richard E. Champlin; Laurence J.N. Cooper

Improving the therapeutic efficacy of T cells expressing a chimeric antigen receptor (CAR) represents an important goal in efforts to control B-cell malignancies. Recently an intrinsic strategy has been developed to modify the CAR itself to improve T-cell signaling. Here we report a second extrinsic approach based on altering the culture milieu to numerically expand CAR(+) T cells with a desired phenotype, for the addition of interleukin (IL)-21 to tissue culture improves CAR-dependent T-cell effector functions. We used electrotransfer of Sleeping Beauty system to introduce a CAR transposon and selectively propagate CAR(+) T cells on CD19(+) artificial antigen-presenting cells (aAPC). When IL-21 was present, there was preferential numeric expansion of CD19-specific T cells which lysed and produced IFN-γ in response to CD19. Populations of these numerically expanded CAR(+) T cells displayed an early memory surface phenotype characterized as CD62L(+)CD28(+) and a transcriptional profile of naïve T cells. In contrast, T cells propagated with only exogenous IL-2 tended to result in an overgrowth of CD19-specific CD4(+) T cells. Furthermore, adoptive transfer of CAR(+) T cells cultured with IL-21 exhibited improved control of CD19(+) B-cell malignancy in mice. To provide coordinated signaling to propagate CAR(+) T cells, we developed a novel mutein of IL-21 bound to the cell surface of aAPC that replaced the need for soluble IL-21. Our findings show that IL-21 can provide an extrinsic reprogramming signal to generate desired CAR(+) T cells for effective immunotherapy.


PLOS ONE | 2013

Manufacture of Clinical-Grade CD19-Specific T Cells Stably Expressing Chimeric Antigen Receptor Using Sleeping Beauty System and Artificial Antigen Presenting Cells

Harjeet Singh; Matthew J. Figliola; Margaret J. Dawson; Simon Olivares; Ling-ling Zhang; Ge Yang; Sourindra Maiti; Pallavi R. Manuri; Vladimir Senyukov; Bipulendu Jena; Partow Kebriaei; Richard E. Champlin; Helen Huls; Laurence J.N. Cooper

Adoptive transfer of T cells expressing a CD19-specific chimeric antigen receptor (CAR) is being evaluated in multiple clinical trials. Our current approach to adoptive immunotherapy is based on a second generation CAR (designated CD19RCD28) that signals through a CD28 and CD3-ζ endodomain. T cells are electroporated with DNA plasmids from the Sleeping Beauty (SB) transposon/transposase system to express this CAR. Stable integrants of genetically modified T cells can then be retrieved when co-cultured with designer artificial antigen presenting cells (aAPC) in the presence of interleukin (IL)-2 and 21. Here, we reveal how the platform technologies of SB-mediated transposition and CAR-dependent propagation on aAPC were adapted for human application. Indeed, we have initiated clinical trials in patients with high-risk B-lineage malignancies undergoing autologous and allogeneic hematopoietic stem-cell transplantation (HSCT). We describe the process to manufacture clinical grade CD19-specific T cells derived from healthy donors. Three validation runs were completed in compliance with current good manufacturing practice for Phase I/II trials demonstrating that by 28 days of co-culture on γ-irradiated aAPC ∼1010 T cells were produced of which >95% expressed CAR. These genetically modified and propagated T cells met all quality control testing and release criteria in support of infusion.


Human Gene Therapy | 2010

piggyBac Transposon/Transposase System to Generate CD19-Specific T Cells for the Treatment of B-Lineage Malignancies

Pallavi R. Manuri; Matthew H. Wilson; Sourindra Maiti; Tiejuan Mi; Harjeet Singh; Simon Olivares; Margaret J. Dawson; Helen Huls; Dean A. Lee; Pulivarthi H. Rao; Joseph M. Kaminski; Yozo Nakazawa; Stephen Gottschalk; Partow Kebriaei; Elizabeth J. Shpall; Richard E. Champlin; Laurence J.N. Cooper

Nonviral integrating vectors can be used for expression of therapeutic genes. piggyBac (PB), a transposon/transposase system, has been used to efficiently generate induced pluripotent stems cells from somatic cells, without genetic alteration. In this paper, we apply PB transposition to express a chimeric antigen receptor (CAR) in primary human T cells. We demonstrate that T cells electroporated to introduce the PB transposon and transposase stably express CD19-specific CAR and when cultured on CD19(+) artificial antigen-presenting cells, numerically expand in a CAR-dependent manner, display a phenotype associated with both memory and effector T cell populations, and exhibit CD19-dependent killing of tumor targets. Integration of the PB transposon expressing CAR was not associated with genotoxicity, based on chromosome analysis. PB transposition for generating human T cells with redirected specificity to a desired target such as CD19 is a new genetic approach with therapeutic implications.


Human Gene Therapy | 2012

Infusing CD19-directed T cells to augment disease control in patients undergoing autologous hematopoietic stem-cell transplantation for advanced B-lymphoid malignancies

Partow Kebriaei; Helen Huls; Bipulendu Jena; Mark F. Munsell; Rineka Jackson; Dean A. Lee; Perry B. Hackett; Gabriela Rondon; Elizabeth J. Shpall; Richard E. Champlin; Laurence J.N. Cooper

Limited curative treatment options exist for patients with advanced B-lymphoid malignancies, and new therapeutic approaches are needed to augment the efficacy of hematopoietic stem-cell transplantation (HSCT). Cellular therapies, such as adoptive transfer of T cells that are being evaluated to target malignant disease, use mechanisms independent of chemo- and radiotherapy with nonoverlapping toxicities. Gene therapy is employed to generate tumor-specific T cells, as specificity can be redirected through enforced expression of a chimeric antigen receptor (CAR) to achieve antigen recognition based on the specificity of a monoclonal antibody. By combining cell and gene therapies, we have opened a new Phase I protocol at the MD Anderson Cancer Center (Houston, TX) to examine the safety and feasibility of administering autologous genetically modified T cells expressing a CD19-specific CAR (capable of signaling through chimeric CD28 and CD3-ζ) into patients with high-risk B-lymphoid malignancies undergoing autologous HSCT. The T cells are genetically modified by nonviral gene transfer of the Sleeping Beauty system and CAR(+) T cells selectively propagated in a CAR-dependent manner on designer artificial antigen-presenting cells. The results of this study will lay the foundation for future protocols including CAR(+) T-cell infusions derived from allogeneic sources.


Immunological Reviews | 2014

A new approach to gene therapy using Sleeping Beauty to genetically modify clinical‐grade T cells to target CD19

Harjeet Singh; Helen Huls; Partow Kebriaei; Laurence J.N. Cooper

The advent of efficient approaches to the genetic modification of T cells has provided investigators with clinically appealing methods to improve the potency of tumor‐specific clinical grade T cells. For example, gene therapy has been successfully used to enforce expression of chimeric antigen receptors (CARs) that provide T cells with ability to directly recognize tumor‐associated antigens without the need for presentation by human leukocyte antigen. Gene transfer of CARs can be undertaken using viral‐based and non‐viral approaches. We have advanced DNA vectors derived from the Sleeping Beauty (SB) system to avoid the expense and manufacturing difficulty associated with transducing T cells with recombinant viral vectors. After electroporation, the transposon/transposase improves the efficiency of integration of plasmids used to express CAR and other transgenes in T cells. The SB system combined with artificial antigen‐presenting cells (aAPC) can selectively propagate and thus retrieve CAR+ T cells suitable for human application. This review describes the translation of the SB system and aAPC for use in clinical trials and highlights how a nimble and cost‐effective approach to developing genetically modified T cells can be used to implement clinical trials infusing next‐generation T cells with improved therapeutic potential.


PLOS ONE | 2013

Chimeric Antigen Receptor (CAR)-Specific Monoclonal Antibody to Detect CD19-Specific T Cells in Clinical Trials

Bipulendu Jena; Sourindra Maiti; Helen Huls; Harjeet Singh; Dean A. Lee; Richard E. Champlin; Laurence J.N. Cooper

Clinical trials targeting CD19 on B-cell malignancies are underway with encouraging anti-tumor responses. Most infuse T cells genetically modified to express a chimeric antigen receptor (CAR) with specificity derived from the scFv region of a CD19-specific mouse monoclonal antibody (mAb, clone FMC63). We describe a novel anti-idiotype monoclonal antibody (mAb) to detect CD19-specific CAR+ T cells before and after their adoptive transfer. This mouse mAb was generated by immunizing with a cellular vaccine expressing the antigen-recognition domain of FMC63. The specificity of the mAb (clone no. 136.20.1) was confined to the scFv region of the CAR as validated by inhibiting CAR-dependent lysis of CD19+ tumor targets. This clone can be used to detect CD19-specific CAR+ T cells in peripheral blood mononuclear cells at a sensitivity of 1∶1,000. In clinical settings the mAb is used to inform on the immunophenotype and persistence of administered CD19-specific T cells. Thus, our CD19-specific CAR mAb (clone no. 136.20.1) will be useful to investigators implementing CD19-specific CAR+ T cells to treat B-lineage malignancies. The methodology described to develop a CAR-specific anti-idiotypic mAb could be extended to other gene therapy trials targeting different tumor associated antigens in the context of CAR-based adoptive T-cell therapy.


Molecular Therapy | 2013

Bispecific T-cells Expressing Polyclonal Repertoire of Endogenous γδ T-cell Receptors and Introduced CD19-specific Chimeric Antigen Receptor

Drew C Deniger; Kirsten Switzer; Tiejuan Mi; Sourindra Maiti; Lenka V. Hurton; Harjeet Singh; Helen Huls; Simon Olivares; Dean A. Lee; Richard E. Champlin; Laurence J.N. Cooper

Even though other γδ T-cell subsets exhibit antitumor activity, adoptive transfer of γδ Tcells is currently limited to one subset (expressing Vγ9Vδ2 T-cell receptor (TCR)) due to dependence on aminobisphosphonates as the only clinically appealing reagent for propagating γδ T cells. Therefore, we developed an approach to propagate polyclonal γδ T cells and rendered them bispecific through expression of a CD19-specific chimeric antigen receptor (CAR). Peripheral blood mononuclear cells (PBMC) were electroporated with Sleeping Beauty (SB) transposon and transposase to enforce expression of CAR in multiple γδ T-cell subsets. CAR(+)γδ T cells were expanded on CD19(+) artificial antigen-presenting cells (aAPC), which resulted in >10(9) CAR(+)γδ T cells from <10(6) total cells. Digital multiplex assay detected TCR mRNA coding for Vδ1, Vδ2, and Vδ3 with Vγ2, Vγ7, Vγ8, Vγ9, and Vγ10 alleles. Polyclonal CAR(+)γδ T cells were functional when TCRγδ and CAR were stimulated and displayed enhanced killing of CD19(+) tumor cell lines compared with CAR(neg)γδ T cells. CD19(+) leukemia xenografts in mice were reduced with CAR(+)γδ T cells compared with control mice. Since CAR, SB, and aAPC have been adapted for human application, clinical trials can now focus on the therapeutic potential of polyclonal γδ T cells.


Journal of Immunotherapy | 2013

Sleeping beauty system to redirect T-cell specificity for human applications

Sourindra Maiti; Helen Huls; Harjeet Singh; Margaret J. Dawson; Matthew J. Figliola; Simon Olivares; Pullavathi Rao; Yi Jue Zhao; Asha S. Multani; Ge Yang; Ling Zhang; Denise L. Crossland; Sonny Ang; Hiroki Torikai; Brian Rabinovich; Dean A. Lee; Partow Kebriaei; Perry B. Hackett; Richard E. Champlin; Laurence J.N. Cooper

The Sleeping Beauty (SB) transposon/transposase DNA plasmid system is used to genetically modify cells for long-term transgene expression. We adapted the SB system for human application and generated T cells expressing a chimeric antigen receptor (CAR) specific for CD19. Electrotransfer of CD19-specific SB DNA plasmids in peripheral blood mononuclear cells and propagation on CD19+ artificial antigen presenting cells was used to numerically expand CD3+ T cells expressing CAR. By day 28 of coculture, >90% of expanded CD3+ T cells expressed CAR. CAR+ T cells specifically killed CD19+ target cells and consisted of subsets expressing biomarkers consistent with central memory, effector memory, and effector phenotypes. CAR+ T cells contracted numerically in the absence of the CD19 antigen, did not express SB11 transposase, and maintained a polyclonal TCR V&agr; and TCR V&bgr; repertoire. Quantitative fluorescence in situ hybridization revealed that CAR+ T cells preserved the telomere length. Quantitative polymerase chain reaction and fluorescence in situ hybridization showed CAR transposon integrated on average once per T-cell genome. CAR+ T cells in peripheral blood can be detected by quantitative polymerase chain reaction at a sensitivity of 0.01%. These findings lay the groundwork as the basis of our first-in-human clinical trials of the nonviral SB system for the investigational treatment of CD19+ B-cell malignancies (currently under 3 INDs: 14193, 14577, and 14739).

Collaboration


Dive into the Helen Huls's collaboration.

Top Co-Authors

Avatar

Laurence J.N. Cooper

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Richard E. Champlin

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Sourindra Maiti

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Harjeet Singh

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Dean A. Lee

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Simon Olivares

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Elizabeth J. Shpall

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Partow Kebriaei

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Tiejuan Mi

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Sonny Ang

University of Texas MD Anderson Cancer Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge