Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Simon Olivares is active.

Publication


Featured researches published by Simon Olivares.


Cancer Research | 2008

Redirecting specificity of T-cell populations for CD19 using the Sleeping Beauty system.

Harjeet Singh; Pallavi R. Manuri; Simon Olivares; Navid Dara; Margaret J. Dawson; Helen Huls; Perry B. Hackett; Donald B. Kohn; Elizabeth J. Shpall; Richard E. Champlin; Laurence J.N. Cooper

Genetic modification of clinical-grade T cells is undertaken to augment function, including redirecting specificity for desired antigen. We and others have introduced a chimeric antigen receptor (CAR) to enable T cells to recognize lineage-specific tumor antigen, such as CD19, and early-phase human trials are currently assessing safety and feasibility. However, a significant barrier to next-generation clinical studies is developing a suitable CAR expression vector capable of genetically modifying a broad population of T cells. Transduction of T cells is relatively efficient but it requires specialized manufacture of expensive clinical grade recombinant virus. Electrotransfer of naked DNA plasmid offers a cost-effective alternative approach, but the inefficiency of transgene integration mandates ex vivo selection under cytocidal concentrations of drug to enforce expression of selection genes to achieve clinically meaningful numbers of CAR(+) T cells. We report a new approach to efficiently generating T cells with redirected specificity, introducing DNA plasmids from the Sleeping Beauty transposon/transposase system to directly express a CD19-specific CAR in memory and effector T cells without drug selection. When coupled with numerical expansion on CD19(+) artificial antigen-presenting cells, this gene transfer method results in rapid outgrowth of CD4(+) and CD8(+) T cells expressing CAR to redirect specificity for CD19(+) tumor cells.


Cancer Research | 2015

Tuning Sensitivity of CAR to EGFR Density Limits Recognition of Normal Tissue While Maintaining Potent Antitumor Activity

Hillary G. Caruso; Lenka V. Hurton; Amer Najjar; David Rushworth; Sonny Ang; Simon Olivares; Tiejuan Mi; Kirsten Switzer; Harjeet Singh; Helen Huls; Dean A. Lee; Amy B. Heimberger; Richard E. Champlin; Laurence J.N. Cooper

Many tumors overexpress tumor-associated antigens relative to normal tissue, such as EGFR. This limits targeting by human T cells modified to express chimeric antigen receptors (CAR) due to potential for deleterious recognition of normal cells. We sought to generate CAR(+) T cells capable of distinguishing malignant from normal cells based on the disparate density of EGFR expression by generating two CARs from monoclonal antibodies that differ in affinity. T cells with low-affinity nimotuzumab-CAR selectively targeted cells overexpressing EGFR, but exhibited diminished effector function as the density of EGFR decreased. In contrast, the activation of T cells bearing high-affinity cetuximab-CAR was not affected by the density of EGFR. In summary, we describe the generation of CARs able to tune T-cell activity to the level of EGFR expression in which a CAR with reduced affinity enabled T cells to distinguish malignant from nonmalignant cells.


Cancer Research | 2011

Reprogramming CD19-Specific T Cells with IL-21 Signaling Can Improve Adoptive Immunotherapy of B-Lineage Malignancies

Harjeet Singh; Matthew J. Figliola; Margaret J. Dawson; Helen Huls; Simon Olivares; Kirsten Switzer; Tiejuan Mi; Sourindra Maiti; Partow Kebriaei; Dean A. Lee; Richard E. Champlin; Laurence J.N. Cooper

Improving the therapeutic efficacy of T cells expressing a chimeric antigen receptor (CAR) represents an important goal in efforts to control B-cell malignancies. Recently an intrinsic strategy has been developed to modify the CAR itself to improve T-cell signaling. Here we report a second extrinsic approach based on altering the culture milieu to numerically expand CAR(+) T cells with a desired phenotype, for the addition of interleukin (IL)-21 to tissue culture improves CAR-dependent T-cell effector functions. We used electrotransfer of Sleeping Beauty system to introduce a CAR transposon and selectively propagate CAR(+) T cells on CD19(+) artificial antigen-presenting cells (aAPC). When IL-21 was present, there was preferential numeric expansion of CD19-specific T cells which lysed and produced IFN-γ in response to CD19. Populations of these numerically expanded CAR(+) T cells displayed an early memory surface phenotype characterized as CD62L(+)CD28(+) and a transcriptional profile of naïve T cells. In contrast, T cells propagated with only exogenous IL-2 tended to result in an overgrowth of CD19-specific CD4(+) T cells. Furthermore, adoptive transfer of CAR(+) T cells cultured with IL-21 exhibited improved control of CD19(+) B-cell malignancy in mice. To provide coordinated signaling to propagate CAR(+) T cells, we developed a novel mutein of IL-21 bound to the cell surface of aAPC that replaced the need for soluble IL-21. Our findings show that IL-21 can provide an extrinsic reprogramming signal to generate desired CAR(+) T cells for effective immunotherapy.


Journal of Clinical Investigation | 2016

Phase I trials using Sleeping Beauty to generate CD19-specific CAR T cells

Partow Kebriaei; Harjeet Singh; M. Helen Huls; Matthew J. Figliola; Roland L. Bassett; Simon Olivares; Bipulendu Jena; Margaret J. Dawson; Pappanaicken R. Kumaresan; Shihuang Su; Sourindra Maiti; Jianliang Dai; Branden S. Moriarity; Marie Andrée Forget; Vladimir Senyukov; Aaron Orozco; Tingting Liu; Jessica McCarty; Rineka Jackson; Judy S. Moyes; Gabriela Rondon; Muzaffar H. Qazilbash; Stefan O. Ciurea; Amin M. Alousi; Yago Nieto; Katy Rezvani; David Marin; Uday Popat; Chitra Hosing; Elizabeth J. Shpall

BACKGROUND T cells expressing antigen-specific chimeric antigen receptors (CARs) improve outcomes for CD19-expressing B cell malignancies. We evaluated a human application of T cells that were genetically modified using the Sleeping Beauty (SB) transposon/transposase system to express a CD19-specific CAR. METHODS T cells were genetically modified using DNA plasmids from the SB platform to stably express a second-generation CD19-specific CAR and selectively propagated ex vivo with activating and propagating cells (AaPCs) and cytokines. Twenty-six patients with advanced non-Hodgkin lymphoma and acute lymphoblastic leukemia safely underwent hematopoietic stem cell transplantation (HSCT) and infusion of CAR T cells as adjuvant therapy in the autologous (n = 7) or allogeneic settings (n = 19). RESULTS SB-mediated genetic transposition and stimulation resulted in 2,200- to 2,500-fold ex vivo expansion of genetically modified T cells, with 84% CAR expression, and without integration hotspots. Following autologous HSCT, the 30-month progression-free and overall survivals were 83% and 100%, respectively. After allogeneic HSCT, the respective 12-month rates were 53% and 63%. No acute or late toxicities and no exacerbation of graft-versus-host disease were observed. Despite a low antigen burden and unsupportive recipient cytokine environment, CAR T cells persisted for an average of 201 days for autologous recipients and 51 days for allogeneic recipients. CONCLUSIONS CD19-specific CAR T cells generated with SB and AaPC platforms were safe, and may provide additional cancer control as planned infusions after HSCT. These results support further clinical development of this nonviral gene therapy approach. TRIAL REGISTRATION Autologous, NCT00968760; allogeneic, NCT01497184; long-term follow-up, NCT01492036. FUNDING National Cancer Institute, private foundations, and institutional funds. Please see Acknowledgments for details.


PLOS ONE | 2013

Manufacture of Clinical-Grade CD19-Specific T Cells Stably Expressing Chimeric Antigen Receptor Using Sleeping Beauty System and Artificial Antigen Presenting Cells

Harjeet Singh; Matthew J. Figliola; Margaret J. Dawson; Simon Olivares; Ling-ling Zhang; Ge Yang; Sourindra Maiti; Pallavi R. Manuri; Vladimir Senyukov; Bipulendu Jena; Partow Kebriaei; Richard E. Champlin; Helen Huls; Laurence J.N. Cooper

Adoptive transfer of T cells expressing a CD19-specific chimeric antigen receptor (CAR) is being evaluated in multiple clinical trials. Our current approach to adoptive immunotherapy is based on a second generation CAR (designated CD19RCD28) that signals through a CD28 and CD3-ζ endodomain. T cells are electroporated with DNA plasmids from the Sleeping Beauty (SB) transposon/transposase system to express this CAR. Stable integrants of genetically modified T cells can then be retrieved when co-cultured with designer artificial antigen presenting cells (aAPC) in the presence of interleukin (IL)-2 and 21. Here, we reveal how the platform technologies of SB-mediated transposition and CAR-dependent propagation on aAPC were adapted for human application. Indeed, we have initiated clinical trials in patients with high-risk B-lineage malignancies undergoing autologous and allogeneic hematopoietic stem-cell transplantation (HSCT). We describe the process to manufacture clinical grade CD19-specific T cells derived from healthy donors. Three validation runs were completed in compliance with current good manufacturing practice for Phase I/II trials demonstrating that by 28 days of co-culture on γ-irradiated aAPC ∼1010 T cells were produced of which >95% expressed CAR. These genetically modified and propagated T cells met all quality control testing and release criteria in support of infusion.


Human Gene Therapy | 2010

piggyBac Transposon/Transposase System to Generate CD19-Specific T Cells for the Treatment of B-Lineage Malignancies

Pallavi R. Manuri; Matthew H. Wilson; Sourindra Maiti; Tiejuan Mi; Harjeet Singh; Simon Olivares; Margaret J. Dawson; Helen Huls; Dean A. Lee; Pulivarthi H. Rao; Joseph M. Kaminski; Yozo Nakazawa; Stephen Gottschalk; Partow Kebriaei; Elizabeth J. Shpall; Richard E. Champlin; Laurence J.N. Cooper

Nonviral integrating vectors can be used for expression of therapeutic genes. piggyBac (PB), a transposon/transposase system, has been used to efficiently generate induced pluripotent stems cells from somatic cells, without genetic alteration. In this paper, we apply PB transposition to express a chimeric antigen receptor (CAR) in primary human T cells. We demonstrate that T cells electroporated to introduce the PB transposon and transposase stably express CD19-specific CAR and when cultured on CD19(+) artificial antigen-presenting cells, numerically expand in a CAR-dependent manner, display a phenotype associated with both memory and effector T cell populations, and exhibit CD19-dependent killing of tumor targets. Integration of the PB transposon expressing CAR was not associated with genotoxicity, based on chromosome analysis. PB transposition for generating human T cells with redirected specificity to a desired target such as CD19 is a new genetic approach with therapeutic implications.


Proceedings of the National Academy of Sciences of the United States of America | 2014

Bioengineering T cells to target carbohydrate to treat opportunistic fungal infection

Pappanaicken R. Kumaresan; Pallavi R. Manuri; Nathaniel D. Albert; Sourindra Maiti; Harjeet Singh; Tiejuan Mi; Jason Roszik; Brian Rabinovich; Simon Olivares; Janani Krishnamurthy; Ling Zhang; Amer Najjar; M. Helen Huls; Dean A. Lee; Richard E. Champlin; Dimitrios P. Kontoyiannis; Laurence J.N. Cooper

Significance Patients with compromised T-cell function are at risk for opportunistic fungal infections. We have developed a novel approach to restore immunity by using a fungal pattern-recognition receptor Dectin-1 to redirect T-cell specificity to carbohydrate antigen in the fungal cell wall. We did so by genetically modifying T cells using the nonviral Sleeping Beauty gene-transfer system to enforce expression of a chimeric antigen receptor (CAR) that recapitulates the specificity of Dectin-1 (D-CAR). The D-CAR+ T cells can be electroporated and propagated on artificial activating and propagating cells in a manner suitable for human application, enabling this immunology to be translated into immunotherapy. This approach has implications for genetically modifying T cells to express CARs with specificity for carbohydrate and thus broadening their application in the investigational treatment of pathogens and malignancies. Clinical-grade T cells are genetically modified ex vivo to express chimeric antigen receptors (CARs) to redirect their specificity to target tumor-associated antigens in vivo. We now have developed this molecular strategy to render cytotoxic T cells specific for fungi. We adapted the pattern-recognition receptor Dectin-1 to activate T cells via chimeric CD28 and CD3-ζ (designated “D-CAR”) upon binding with carbohydrate in the cell wall of Aspergillus germlings. T cells genetically modified with the Sleeping Beauty system to express D-CAR stably were propagated selectively on artificial activating and propagating cells using an approach similar to that approved by the Food and Drug Administration for manufacturing CD19-specific CAR+ T cells for clinical trials. The D-CAR+ T cells exhibited specificity for β-glucan which led to damage and inhibition of hyphal growth of Aspergillus in vitro and in vivo. Treatment of D-CAR+ T cells with steroids did not compromise antifungal activity significantly. These data support the targeting of carbohydrate antigens by CAR+ T cells and provide a clinically appealing strategy to enhance immunity for opportunistic fungal infections using T-cell gene therapy.


Molecular Therapy | 2013

Bispecific T-cells Expressing Polyclonal Repertoire of Endogenous γδ T-cell Receptors and Introduced CD19-specific Chimeric Antigen Receptor

Drew C Deniger; Kirsten Switzer; Tiejuan Mi; Sourindra Maiti; Lenka V. Hurton; Harjeet Singh; Helen Huls; Simon Olivares; Dean A. Lee; Richard E. Champlin; Laurence J.N. Cooper

Even though other γδ T-cell subsets exhibit antitumor activity, adoptive transfer of γδ Tcells is currently limited to one subset (expressing Vγ9Vδ2 T-cell receptor (TCR)) due to dependence on aminobisphosphonates as the only clinically appealing reagent for propagating γδ T cells. Therefore, we developed an approach to propagate polyclonal γδ T cells and rendered them bispecific through expression of a CD19-specific chimeric antigen receptor (CAR). Peripheral blood mononuclear cells (PBMC) were electroporated with Sleeping Beauty (SB) transposon and transposase to enforce expression of CAR in multiple γδ T-cell subsets. CAR(+)γδ T cells were expanded on CD19(+) artificial antigen-presenting cells (aAPC), which resulted in >10(9) CAR(+)γδ T cells from <10(6) total cells. Digital multiplex assay detected TCR mRNA coding for Vδ1, Vδ2, and Vδ3 with Vγ2, Vγ7, Vγ8, Vγ9, and Vγ10 alleles. Polyclonal CAR(+)γδ T cells were functional when TCRγδ and CAR were stimulated and displayed enhanced killing of CD19(+) tumor cell lines compared with CAR(neg)γδ T cells. CD19(+) leukemia xenografts in mice were reduced with CAR(+)γδ T cells compared with control mice. Since CAR, SB, and aAPC have been adapted for human application, clinical trials can now focus on the therapeutic potential of polyclonal γδ T cells.


Journal of Immunotherapy | 2013

Sleeping beauty system to redirect T-cell specificity for human applications

Sourindra Maiti; Helen Huls; Harjeet Singh; Margaret J. Dawson; Matthew J. Figliola; Simon Olivares; Pullavathi Rao; Yi Jue Zhao; Asha S. Multani; Ge Yang; Ling Zhang; Denise L. Crossland; Sonny Ang; Hiroki Torikai; Brian Rabinovich; Dean A. Lee; Partow Kebriaei; Perry B. Hackett; Richard E. Champlin; Laurence J.N. Cooper

The Sleeping Beauty (SB) transposon/transposase DNA plasmid system is used to genetically modify cells for long-term transgene expression. We adapted the SB system for human application and generated T cells expressing a chimeric antigen receptor (CAR) specific for CD19. Electrotransfer of CD19-specific SB DNA plasmids in peripheral blood mononuclear cells and propagation on CD19+ artificial antigen presenting cells was used to numerically expand CD3+ T cells expressing CAR. By day 28 of coculture, >90% of expanded CD3+ T cells expressed CAR. CAR+ T cells specifically killed CD19+ target cells and consisted of subsets expressing biomarkers consistent with central memory, effector memory, and effector phenotypes. CAR+ T cells contracted numerically in the absence of the CD19 antigen, did not express SB11 transposase, and maintained a polyclonal TCR V&agr; and TCR V&bgr; repertoire. Quantitative fluorescence in situ hybridization revealed that CAR+ T cells preserved the telomere length. Quantitative polymerase chain reaction and fluorescence in situ hybridization showed CAR transposon integrated on average once per T-cell genome. CAR+ T cells in peripheral blood can be detected by quantitative polymerase chain reaction at a sensitivity of 0.01%. These findings lay the groundwork as the basis of our first-in-human clinical trials of the nonviral SB system for the investigational treatment of CD19+ B-cell malignancies (currently under 3 INDs: 14193, 14577, and 14739).


Clinical Cancer Research | 2014

Activating and Propagating Polyclonal Gamma Delta T Cells with Broad Specificity for Malignancies

Drew C. Deniger; Sourindra Maiti; Tiejuan Mi; Kirsten Switzer; Lenka V. Hurton; Sonny Ang; Simon Olivares; Brian Rabinovich; M. Helen Huls; Dean A. Lee; Robert C. Bast; Richard E. Champlin; Laurence J.N. Cooper

Purpose: To activate and propagate populations of γδ T cells expressing polyclonal repertoire of γ and δ T-cell receptor (TCR) chains for adoptive immunotherapy of cancer, which has yet to be achieved. Experimental Design: Clinical-grade artificial antigen-presenting cells (aAPC) derived from K562 tumor cells were used as irradiated feeders to activate and expand human γδ T cells to clinical scale. These cells were tested for proliferation, TCR expression, memory phenotype, cytokine secretion, and tumor killing. Results: γδ T-cell proliferation was dependent upon CD137L expression on aAPC and addition of exogenous IL2 and IL21. Propagated γδ T cells were polyclonal as they expressed TRDV1, TRDV2-2, TRDV3, TRDV5, TRDV7, and TRDV8 with TRGV2, TRGV3F, TRGV7, TRGV8, TRGV9*A1, TRGV10*A1, and TRGV11 TCR chains. IFNγ production by Vδ1, Vδ2, and Vδ1negVδ2neg subsets was inhibited by pan-TCRγδ antibody when added to cocultures of polyclonal γδ T cells and tumor cell lines. Polyclonal γδ T cells killed acute and chronic leukemia, colon, pancreatic, and ovarian cancer cell lines, but not healthy autologous or allogeneic normal B cells. Blocking antibodies demonstrated that polyclonal γδ T cells mediated tumor cell lysis through combination of DNAM1, NKG2D, and TCRγδ. The adoptive transfer of activated and propagated γδ T cells expressing polyclonal versus defined Vδ TCR chains imparted a hierarchy (polyclonal>Vδ1>Vδ1negVδ2neg>Vδ2) of survival of mice with ovarian cancer xenografts. Conclusions: Polyclonal γδ T cells can be activated and propagated with clinical-grade aAPCs and demonstrate broad antitumor activities, which will facilitate the implementation of γδ T-cell cancer immunotherapies in humans. Clin Cancer Res; 20(22); 5708–19. ©2014 AACR.

Collaboration


Dive into the Simon Olivares's collaboration.

Top Co-Authors

Avatar

Laurence J.N. Cooper

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Harjeet Singh

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Richard E. Champlin

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Helen Huls

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Dean A. Lee

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Sourindra Maiti

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Tiejuan Mi

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Elizabeth J. Shpall

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Partow Kebriaei

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Matthew J. Figliola

University of Texas MD Anderson Cancer Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge